The Influence of Mn, Zr and Pb Promoters on the Performance of Cu/ZnO/SBA-15 Catalyst for Hydrogenation of CO2 to Methanol

Article Preview

Abstract:

The present work investigates the hydrogenation of CO2 to methanol via a promoted Cu/ZnO/SBA-15 catalyst. In order to understand the effect of Mn, Zr and Pb promoters on the catalytic activity of Cu/Zn/SBA-15 catalysts, the hydrogenation of CO2 was performed in a stirred high-pressure reactor at 483K, 22.5bar, and a H2/CO2 ration of 3. The physicochemical properties of the catalysts were studied using N2 physical adsorption, TEM and H2-TPR. The characteristics of catalysts depended on the type of promoter and it influenced their catalytic performance. The Mn and Zr promoters resulted in a larger surface area of the catalyst and improved catalytic activity and methanol selectivity. However, an opposite effect was found for the Pb promoter. A 10% improvement on the CO2 conversion and 20% on the methanol selectivity was achieved due to the double promotion effect of Mn and Zr on Cu/ZnO-SBA-15 catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-182

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Li, X. Yuan, and K. Fujimoto, Appl. Catal., A, vol. 469, (2014), pp.306-311.

Google Scholar

[2] J. Toyir, P. R. de la Piscina, J. L. G. Fierro, and N. Homs, Appl. Catal., B, vol. 29, (2001), pp.207-215.

Google Scholar

[3] J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, and Y. Sun, Catal. today, vol. 148, (2009), pp.221-231.

Google Scholar

[4] V. Subramani and S. K. Gangwal, Energy & fuels, vol. 22, (2008), pp.814-839.

Google Scholar

[5] M. Bowker, R. Hadden, H. Houghton, J. Hyland, and K. Waugh, J. Catal., vol. 109, (1988), pp.263-273.

Google Scholar

[6] B. J. Liaw and Y. Z. Chen, Appl. Catal., A, vol. 206, (2001), pp.245-256.

Google Scholar

[7] M. Saito and K. Murata, Catal. Surv. Asia, vol. 8, (2004), pp.285-294.

Google Scholar

[8] R. Xu, W. Wei, W. -h. Li, T. -d. Hu, and Y. -h. Sun, J. Mol. Catal. A: Chem., vol. 234, (2005), pp.75-83.

Google Scholar

[9] F. Meshkini, M. T. Mazandarani, and M. Bahmanib, ECCE6, (2007).

Google Scholar

[10] Y. W. Suh, S. H. Moon, and H. K. Rhee, Catal. today, vol. 63, (2000), pp.447-452.

Google Scholar

[11] X. -M. Liu, G. Q. Lu, and Z. -F. Yan, Appl. Catal. A, vol. 279, (2005), pp.241-245.

Google Scholar

[12] I. A. Fisher, H. C. Woo, and A. T. Bell, Catal. lette., vol. 44, (1997), pp.11-17.

Google Scholar

[13] L. Huang, W. Chu, Y. Long, Z. Ci, and S. Luo, Catal. lette., vol. 108, (2006), pp.113-118.

Google Scholar

[14] Y. -W. Suh, S. -H. Moon, and H. -K. Rhee, Catal. today, vol. 63, (2006), pp.447-452.

Google Scholar

[15] Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, JACS, vol. 120, (1998), pp.6024-6036.

Google Scholar

[16] H.Y. Chen, J. Lin, K.L. Tan, J. Li, Appl. Surf. Sci. vol 126, (1998) pp.323-331.

Google Scholar

[17] M. Kilo, J. Weigel, A. Wokaun, R. Koeppel, A. Stoeckli, and A. Baiker, J. Mol. Catal. A: Chem., vol. 126, (1997), pp.169-184.

Google Scholar