High Temperature Nanoindentation Testing of Amorphous SiC and B4C Thin Films

Article Preview

Abstract:

Amorphous silicon carbide (a-SiC) and boron carbide (a-B4C) thin films were deposited using reactive magnetron sputtering of SiC and B4C target, respectively. Nanoindentation tests performed up to 450 °C in air were performed to explore and compare their hardness and elastic modulus.Hardness of a-B4C film decreases at smaller rate in comparison to a-SiC film up to 450 °C. Similarly, elastic modulus value of B4C is more stable with temperature than that of a-SiC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-118

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, Boron Carbide: Structure, Properties, and Stability under Stress, Journal of the American Ceramic Society 94 (2011) 3605-3628.

DOI: 10.1111/j.1551-2916.2011.04865.x

Google Scholar

[2] J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review, Solid·State Electron. 39 (1996) 1409-1422.

DOI: 10.1016/0038-1101(96)00045-7

Google Scholar

[3] S. Ulrich, T. Theel, J. Schwan, H. Ehrhardt, Magnetron-sputtered superhard materials, Surf. Coat. Technol. 97 (1997) 45-59.

DOI: 10.1016/s0257-8972(97)00159-x

Google Scholar

[4] V. Kulikovsky, V. Vorlíček, P. Boháč, M. Stranyánek, R. Čtvrtlík, A. Kurdyumov, et al., Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films, Surf. Coat. Technol. 202 (2008) 1738-1745.

DOI: 10.1016/j.surfcoat.2007.07.029

Google Scholar

[5] V. Kulikovsky, V. Vorlicek, P. Bohac, R. Ctvrtlik, M. Stranyanek, A. Dejneka, et al., Mechanical properties and structure of amorphous and crystalline B4C films, Diam. Relat. Mater. 18 (2009) 27-33.

DOI: 10.1016/j.diamond.2008.07.021

Google Scholar

[6] F. Thévenot, Boron carbide—A comprehensive review, Journal of the European Ceramic Society 6 (1990) 205-225.

DOI: 10.1016/0955-2219(90)90048-k

Google Scholar

[7] T.J.M. Y. Lee, Ch. Yue, M.S. Kazimi, Safety Assessment of SiC Cladding Oxidation Under Loss-of-Coolant Accident Conditions in Light Water Reactors, Nuclear Technology 183 (2013) 8.

DOI: 10.13182/nt12-122

Google Scholar

[8] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[9] J.M. Wheeler, J. Michler. Invited Article: Indenter materials for high temperature nanoindentation2013.

Google Scholar

[10] K. Albe, Theoretical study of boron nitride modifications at hydrostatic pressures, Physical Review B 55 (1997) 6203-6210.

DOI: 10.1103/physrevb.55.6203

Google Scholar

[11] R. Ctvrtlik, M. Al-Haik, V. Kulikovsky, Mechanical properties of amorphous silicon carbonitride thin films at elevated temperatures, J. Mater. Sci. 50 (2015) 1553-1564.

DOI: 10.1007/s10853-014-8715-0

Google Scholar

[12] V. Kulikovsky, V. Vorlicek, R. Ctvrtlik, P. Bohac, L. Jastrabik, H. Lapsanska, Effect of air annealing on mechanical properties and structure of amorphous B4C films, Surf. Coat. Technol. 205 (2011) 4052-4057.

DOI: 10.1016/j.surfcoat.2011.02.052

Google Scholar

[13] V. Kulikovsky, R. Ctvrtlik, V. Vorlicek, V. Zelezny, P. Bohac, L. Jastrabik, Effect of air annealing on mechanical properties and structure of SiCxNy magnetron sputtered films, Surf. Coat. Technol. 240 (2014) 76-85.

DOI: 10.1016/j.surfcoat.2013.12.017

Google Scholar

[14] J.M. Wheeler, R.A. Oliver, T.W. Clyne, AFM observation of diamond indenters after oxidation at elevated temperatures, Diam. Relat. Mater. 19 (2010) 1348-1353.

DOI: 10.1016/j.diamond.2010.07.004

Google Scholar

[15] J. Menčík, D. Zíta, Residual Stresses and Energies in Elastic-Plastic Materials after Concentrated Contact Key Engineering Materials 662 (2015) 3-6.

DOI: 10.4028/www.scientific.net/kem.662.3

Google Scholar

[16] T. Hirai, K. Niihara, Hot hardness of SiC single crystal, J. Mater. Sci. 14 (1979) 2253-2255.

DOI: 10.1007/bf00688433

Google Scholar