Nanoindentation Assessed Fracture Toughness of Cement Paste

Article Preview

Abstract:

This paper deals with fracture properties of microlevel components of hydrated cementpaste. Determination of fracture energy and fracture toughness for quasi-brittle materials hasbecome a challenge for many years on both macro- and micro-scales. Limited number of quantitative data can be found in the literature for the micro-scale. This work uses energetic approach and decomposition of work of indentation into plastic and other parts. Based on simplified assumptions fracture energy and fracture toughness are calculated for individual microstructural phases of cement paste with the aid of nanoindentation, statistical deconvolution and fracture mechanics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-189

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Němeček, J., Králík, V., Vondřejc, J., Micromechanical analysis of heterogeneous structural materials, Cem Concr Comp 36 (2013), 85-92.

DOI: 10.1016/j.cemconcomp.2012.06.015

Google Scholar

[2] da Silva, W. R. L.; Nemecek, J.; Stemberk, P., Methodology for nanoindentation-assisted prediction of macroscale elastic properties of high performance cementitious composites, Cem Concr Comp 45 (2014), 57-68.

DOI: 10.1016/j.cemconcomp.2013.09.013

Google Scholar

[3] Minster, J.; Blahova, O.; Lukes, J.; et al., Time-dependent mechanical characteristics measured through the use of a microindentation technique, Mech Time-Dep Mat 14 (3) (2010), 243-251.

DOI: 10.1007/s11043-009-9105-x

Google Scholar

[4] Cook, R.F., Pharr, G.M., Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73 (1990), 787–817.

DOI: 10.1111/j.1151-2916.1990.tb05119.x

Google Scholar

[5] Lawn, B.R., Evans, A.G., Marshall, D.B., Elastic/plastic indentation damage in ceramics: the median/radial crack system. J. Am. Ceram. Soc. 63 (1980), 574–581.

DOI: 10.1111/j.1151-2916.1980.tb10768.x

Google Scholar

[6] Chen, J., Bull, S.J. Indentation fracture and toughness assessment for thin optical coatings on glass. J. Phys. D-Appl. Phys. 40 (2007), 5401–5417.

DOI: 10.1088/0022-3727/40/18/s01

Google Scholar

[7] Li, X., Diao, D., Bhushan, B., Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater 45(11) (1997)4453–4461.

DOI: 10.1016/s1359-6454(97)00143-2

Google Scholar

[8] Jung, YG., Pajares, A., Banerjee, R., Lawn, BR., Strength of silicon, sapphire in the subthreshold flaw and glass region, Acta Mater 52 (2004) 3459.

DOI: 10.1016/j.actamat.2004.03.043

Google Scholar

[9] Field, JS., Swain, MV., Dukino, RD., Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J. Mater. Res. 18 (2003) 1412.

DOI: 10.1557/jmr.2003.0194

Google Scholar

[10] Cheng, Y.T., Li, Z.Y., Cheng, C.M., Scaling relationships for indentation measurements, Philos. Mag. A 82 (2002), 1821–1829.

Google Scholar

[11] Taha, RM., et al., Fracture toughness of hydrated cement paste using nanoindentation, Fracture Mechanics of Concrete and Concrete Structures - Recent Advances in Fracture Mechanics of Concrete - B. H. Oh, et al. (eds), (2010).

DOI: 10.21012/fc9.184

Google Scholar