Effects of Cattaneo-Christov Heat Flux on Casson Nanofluid Flow Past a Stretching Cylinder

Article Preview

Abstract:

In this paper, we investigate the combined effects of Brownian motion, thermophoresis and Cattaneo-Christov heat flux on Casson nanofluid boundary layer flow over a stretching cylinder. The governing partial differential equations (PDEs) are obtained and transformed into a system of ordinary differential equations (ODEs) by employing appropriate similarity solution. The model nonlinear boundary value problem is tackled numerically using fourth-fifth order Runge-Kutta integration scheme with shooting technique. Effects of various thermophysical parameters on the velocity, temperature and concentration profiles as well as skin friction and Sherwood number are presented graphically and discussed quantitatively. It is found that thermal relaxation parameter minimizes the temperature field and boosting the rate of heat transfer per unit volume. This heat flux conditions are very useful for thermal transport control in manufacturing and chemical industries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-38

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.B.J. Fourier, Theorie analytique De La chaleur, Paris, (1822).

Google Scholar

[2] C. Cattaneo, Sulla conuzione del calore, Atti semin. Mat. Fis. Univ. Modena Reggio Emilia 3 (1948) 83-101.

Google Scholar

[3] C.I. Christov, On frame in different formulation of the Maxwell-Cattaneo model of finite speed heat conduction, Mech. Res. Commun. 36 (2009) 481-486.

DOI: 10.1016/j.mechrescom.2008.11.003

Google Scholar

[4] B. Straughan, Thermal convective with Cattaneo-Christov model, Int. J. Heat and Mass Transfer 53 (2010) 95-98.

DOI: 10.1016/j.ijheatmasstransfer.2009.10.001

Google Scholar

[5] V. Tibllo, V. Zampoli, A uniqueness result for Cattaneo-Christov heat conduction model applied to incompressible fluids, Mech. Res. Commun. 38 (2011) 77-99.

DOI: 10.1016/j.mechrescom.2010.10.008

Google Scholar

[6] S. Han, L. Zheng, C. Li, X. Zhang, Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model, Appl. Math. Lett. 38 (2014) 87-93.

DOI: 10.1016/j.aml.2014.07.013

Google Scholar

[7] M. Mustafa, Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper convected Maxwell fluid, AIP Advances 5 (2015) 047109.

DOI: 10.1063/1.4917306

Google Scholar

[8] B. Das, R. L. Batra, Secondary flow of a Casson fluid in a slightly curved tube, Int.J. Non-Linear Mechanics, 28(5) (1993) 567.

DOI: 10.1016/0020-7462(93)90048-p

Google Scholar

[9] M. E. Sayed Ahmed, H. A. Attia, Magnetohydrodynamic flow and heat transfer of a non-Newtonian fluid in an eccentric annulus, Can. J. Phy. 76 (1998) 391.

DOI: 10.1139/cjp-76-5-391

Google Scholar

[10] M. Mustafa, T. Hayat, I. Pop, A. Aziz, Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate, Heat Transfer Asian Res., 40(6) (2011) 563-576.

DOI: 10.1002/htj.20358

Google Scholar

[11] A.G. Fredrickson, Principles and applications of rheology, Prentice Hall, Englewood, Cliffs, (1964).

Google Scholar

[12] N. T. M. Eldabe, M. G. E. Salwa, Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders. J. Phy Soc Jpn, 64 (1995) 41-64.

Google Scholar

[13] S. Nadeem, R. U. I Haq, MHD three dimensional Casson fluid flow past a porous linearly stretching sheet, Alexandria Eng. Journal, 52 (2013) 577-582.

DOI: 10.1016/j.aej.2013.08.005

Google Scholar

[14] C.S.K. Raju, N. Sandeep, A comparative study on heat and mass transfer of the Blasius and Falkner-Skan flow of a bio-convective Casson fluid past a wedge, Eur. Phys. J. Plus, 131 (2016) 405.

DOI: 10.1140/epjp/i2016-16405-y

Google Scholar

[15] O. D. Makinde, A. S. Eegunjobi, Entropy analysis of thermally radiating magnetohydrodynamics slip flow of Casson fluid in a microchannel filled with saturated porous media. Journal of Porous Media, 19 (9) (2016) 799-810.

DOI: 10.1615/jpormedia.v19.i9.40

Google Scholar

[16] S. U. S. Choi, J. A. Eastman, "Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical engineering, 66 (1995) 99-105.

Google Scholar

[17] M.Y. Malik, M. Naseer, S Nadeem, A Rehman, The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder. Appli. Nanosci, 4(7) (2014) 869-873.

DOI: 10.1007/s13204-013-0267-0

Google Scholar

[18] C. Y. Wang, Heat transfer over a vertical stretching cylinder. Commun Nonlinear Sci Num Sim 17 (2012) 1098-1103.

Google Scholar

[19] A. Majeed, T. Javed, a. Ghaffari, Heat transfer due to stretching cylinder with partial slip and prescribed heat flux, Alexandria Eng. J. 54 (2015) 1029-1036.

DOI: 10.1016/j.aej.2015.09.015

Google Scholar

[20] N. Bachok, A. Ishak, Flow and heat transfer over a stretching cylinder with prescribed surface heat flux, Malaysian J. Math. Sci. 4 (2) (2010) 159–169.

Google Scholar

[21] W. Ibrahim, O. D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition, Journal of Aerospace Engineering, 29(2) (2016) Article # 04015037.

DOI: 10.1061/(asce)as.1943-5525.0000529

Google Scholar

[22] A. Jasmine Benazir, R. Sivaraj, O. D. Makinde, Unsteady magnetohydrodynamic Casson fluid flow over a vertical cone and flat plate with non-uniform heat source/sink, International Journal of Engineering Research in Africa, 21 (2016) 69-83.

DOI: 10.4028/www.scientific.net/jera.21.69

Google Scholar

[23] O. D. Makinde, N. Sandeep, I. L. Animasaun, M. S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, Defect and Diffusion Forum, 374 (2017) 67-82.

DOI: 10.4028/www.scientific.net/ddf.374.67

Google Scholar