[1]
Dost, S.; Lent, B. (2007): Single Crystal Growth of Semiconductors from Metallic Solutions. (Elsevier, Amsterdam, the Netherlands 2007).
DOI: 10.1016/b978-044452232-0/50005-5
Google Scholar
[2]
Mechighel, F. (2013): Modélisation de la convection lors d'un changement de phase : Stabilisation par champ magnétique, ISBN 978-3-8381-7977-3, (ed. Morel P.) (Presses Académiques Francophones PAF,, Saarbrücken, Germany).
Google Scholar
[3]
Kuhlmann, H.C. (1999): Thermocapillary Convection in Models of Crystal Growth. (Springer-Verlag, New York).
Google Scholar
[4]
Kawamura, H.; Ueno, I. (2006).
Google Scholar
[5]
Hossain, M.A.; Hafiz, M.Z.; Rees, D.A.S. (2005): Buoyancy and thermocapillary driven convection flow of an electrically conducting fluid in an enclosure with heat generation, International Journal of Thermal Sciences, vol. 44, p.676–684.
DOI: 10.1016/j.ijthermalsci.2004.11.005
Google Scholar
[6]
Sampath, R.; Zabaras, N. (2001).
Google Scholar
[7]
Nakajima, K.; Yasuhiro, S.; Mizoguchi, S.; Imaishi, N. (2003).
Google Scholar
[8]
Amberg, G.; Shiomi, J. (2005): Thermo-capillary flow and phase change in some widespread materials processes, FDMP, Fluid Dynamics & Materials Processing, vol. 1, no.1, pp.81-95.
Google Scholar
[9]
Martin Witkowski L.; Walker, J.S. (2002): Solutocapillary instabilities in liquid bridges. Physics of Fluids, vol.14, no. 8, pp.2647-2656.
DOI: 10.1063/1.1488598
Google Scholar
[10]
Samanta, Deep (2006): Computational techniques for the analysis and control of alloy solidification processes, PhD thesis, Cornell University, USA.
Google Scholar
[11]
Lyubimova, T.P.; Skuridin, R.V.; Faizrakhmanova, I.S. (2007): Thermo- and soluto-capillary convection in the floating zone process in zero gravity conditions. Journal of Crystal Growth, vol. 303, p.274–278.
DOI: 10.1016/j.jcrysgro.2006.12.012
Google Scholar
[12]
Lappa, Marcello (2005): Review: Possible strategies for the control and stabilization of Marangoni flow in laterally heated floating zones. FDMP, Fluid Dynamics & Materials Processing, vol.1, no.2, pp.171-187.
Google Scholar
[13]
Deal, A. (2004): Enhanced morphological stability in Sb-doped Ge single crystals, PhD thesis, Florida University, USA.
Google Scholar
[14]
Armour, N.; Dost, S.; Lent, B. (2007): Effect of free surface and gravity on silicon dissolution in germanium melt. Journal of Crystal Growth, vol. 299, p.227–233.
DOI: 10.1016/j.jcrysgro.2006.11.240
Google Scholar
[15]
Tagaya, E.; Ueno, I.; Kawamura, H. (2003): A consideration on relation between oscillatory Marangoni flow in a liquid bridge and the hydrothermal wave in a thin liquid film. Thermal Science and Engineering, vol. 11, pp.45-46.
Google Scholar
[16]
Matsumoto, S.; Hayashida, H.; Natsui, H.; Yoda, S.; Imaishi, N. (2004): Transition phenomena on Marangoni convection in low Pr number liquid bridge. Thermal Sci. Eng., vol. 12, pp.21-22.
Google Scholar
[17]
Chen, J.C.; Huang, Y.C. (1990): Thermocapillary flows of surface melting due to a moving heat flux. Internat. J. Heat Mass Transfer, vol. 34, p.663–671.
DOI: 10.1016/0017-9310(91)90114-t
Google Scholar
[18]
Ozoe, H.; Szmyd, J.S; Tagawa, T. (2007): Magnetic Fields in Semiconductor Crystal Growth. S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends, 375–390 Springer.
DOI: 10.1007/978-1-4020-4833-3_23
Google Scholar
[19]
Mechighel, F.; El Ganaoui, M.; Kadja, M.; Pateyron, B.; Dost, S. (2009).
Google Scholar
[20]
Ma, N.; Walker, J.S. (2006): Electromagnetic Stirring in Crystal Growth Processes. FDMP: Fluid Dynamics & Materials Processing. vol. 2, no. 2, pp.119-126.
Google Scholar
[21]
Kakimoto, K.; Liu, L. (2006): Flow Instability of Silicon Melt in Magnetic Fields: FDMP: Fluid Dynamics & Materials Processing. vol. 2, no. 3, pp.167-174.
Google Scholar
[22]
Mechighel, F.; Armour, N.; Dost, S.; Kadja, M. (2011): Mathematical modeling of the dissolution process of silicon into germanium melt. TWMS: J. App. Eng. Math., vol.1, no.2, 2011, pp.127-149.
Google Scholar
[23]
Zheng, L.; Guo, Z.; Shi, B.; Zheng, C. (2010a): Lattice Boltzmann Method for Thermocapillary Flows, Adv. Appl. Math. Mech., vol. 2, no. 5, pp.677-684.
Google Scholar
[24]
Peng, Y.; Shu, C.; Chew, Y.T.; Qiu, J. (2003): Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method. J. Comput. Phys., vol. 186, p.295–307.
DOI: 10.1016/s0021-9991(03)00067-6
Google Scholar
[25]
Chang, Q.; Alexander, J.I.D. (2007): Study of Marangoni-natural convection in a two-layer liquid system with density inversion using a lattice Boltzmann model. Phys. Fluids, vol. 19, p.102107/1-11.
DOI: 10.1063/1.2784530
Google Scholar
[26]
Thürey, N.; Rüde, U. (2009): Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids, Comput. Visual Sci., vol. 12, pp.247-263.
DOI: 10.1007/s00791-008-0090-4
Google Scholar
[27]
Swift, M.R.; Orlandi, E.; Osborn, W.R.; Yeomans, J.M. (1996): Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev., vol. E54, p.5041–5052.
DOI: 10.1103/physreve.54.5041
Google Scholar
[28]
Miller, W.; Succi, S.; Mansutti, D. (2001): Lattice Boltzmann Model for Anisotropic Liquid-Solid Phase Transition. Physical review letters, vol. 86, no. 16, pp.3578-3581.
DOI: 10.1103/physrevlett.86.3578
Google Scholar
[29]
Zheng, L.; Guo, Z.L.; Shi, B.C.; Zheng, C.G. (2010b): Lattice Boltzmann equation for axisymmetric thermal flows. Comput. Fluids, vol. 39, p.945–952.
DOI: 10.1016/j.compfluid.2010.01.006
Google Scholar
[30]
Mai, H-C.; Lin, K-H.; Yang, C-H.; Lin, C-A. (2010): A Thermal Lattice Boltzmann Model for Flows with Viscous Heat Dissipation, CMES-Computer Modeling in Engineering & Sciences, vol.61, no.1, pp.45-63.
Google Scholar
[31]
Ho, C-F.; Chang, C.; Lin, K-H.; Lin, C-A. (2009): Consistent Boundary Conditions for 2D and 3D Lattice Boltzmann Simulations, CMES-Computer Modeling in Engineering & Sciences, vol.44, no.2, pp.137-155.
Google Scholar
[32]
Niu, X.; Yamaguchi, H.; Iwamoto, Y.; Zhang, X.; Li, M.; Iwamoto, Y. (2010): Study of Forced Convection Heat Transfer of Supercritical CO2 in a Horizontal Channel by Lattice Boltzmann Method. Adv. Appl. Math. Mech., vol. 2, no. 5, pp.564-572.
DOI: 10.4208/aamm.10-10s03
Google Scholar
[33]
Yang, C-H.; Chang, C.; Lin, CA. (2009): A Direct Forcing Immersed Boundary Method Based Lattice Boltzmann Method to Simulate Flows with Complex Geometry, CMC-Computers Materials & Continua, vol.11, no. 3, pp.209-228.
Google Scholar
[34]
Cosgrove, J.A.; Buick, J.M.; Tonge, S.J.; Munro, C.G.; Greated, C.A.; Campbell, D.M. (2003): Application of the lattice Boltzmann method to transition in oscillatory channel flow. J. Phys. A: Math. Gen., vol. 36, p.2609–2620.
DOI: 10.1088/0305-4470/36/10/320
Google Scholar
[35]
Chen, S.; Wang, Z.; Shan, X.; Doolen, G.D. (1992): Lattice Boltzmann Computational Fluid Dynamics in Three Dimensions, Journal of Statistical Physics, vol. 68, nos. 3/4, pp.379-400.
DOI: 10.1007/bf01341754
Google Scholar
[36]
Kandhai, D.; Koponen, A.; Hoekstra, A.G.; Kataja, M.; Timonen, J.; Sloot, P.M.A. (1999): Implementation Aspects of 3D Lattice-BGK: Boundaries, Accuracy, and a New Fast Relaxation Method. Journal of Computational Physics, vol. 150, p.482–501.
DOI: 10.1006/jcph.1999.6191
Google Scholar
[37]
Bernsdorf, J.M. (2008): Simulation of Complex Flows and Multi-Physics with the Lattice-Boltzmann Method, PhD thesis, University of Amsterdam & Erlangen, Duistland, Germany.
Google Scholar
[38]
Pan, C.; Prins, J.F.; Miller, C.T. (2004): A high-performance lattice Boltzmann implementation to model flow in porous media. Computer Physics Communications, vol. 158, p.89–105.
DOI: 10.1016/j.cpc.2003.12.003
Google Scholar
[39]
Succi, S. (2001): The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon press, Oxford.
Google Scholar
[40]
Lätt, J. (2007): Hydrodynamic Limit of Lattice Boltzmann Equations, PhD thesis, University of Geneva.
Google Scholar
[41]
Mohamad, A.A. (2007): Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer. Sure Print, Dalbrent, Calgary.
DOI: 10.1002/cjce.5450850617
Google Scholar
[42]
Lallemand, P.; Luo, L.S. (2000): Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E, vol. 61, no.6, pp.6546-6562.
DOI: 10.1103/physreve.61.6546
Google Scholar
[43]
Ansumali, S. (2004): Minimal Kinetic Modeling of Hydrodynamics, PhD thesis, Swiss Federal Institute of Technology Zurich.
Google Scholar
[44]
Luo, Li-Shi (1993): Lattice-Gas Automata and Lattice Boltzmann Equations for Two-Dimensional Hydrodynamics, PhD thesis, Georgia Institute of Technology.
Google Scholar
[45]
Mechighel, F.; Dost, S.; El Ganaoui, M. (2018).
Google Scholar
[46]
COMSOL user manual modeling, theory, (2007).
Google Scholar
[47]
Yildiz, M. (2005): A Combined Experimental and Modeling Study for the Growth of SixGe1-x Single Crystals by Liquid Phase Diffusion (LPD), PhD thesis, University of Victoria, Canada.
Google Scholar