Lattice Boltzmann Equations-Based Model of the Convection Melt Flow Driven by the Combined Effects of Buoyancy, Surface Tension and Magnetic Body Forces with Heat Generation

Article Preview

Abstract:

The main topic of this paper is the development of a mathematical model, based on the Lattice Boltzmann equations (LBE), which is proposed for the simulation of the complex convective flow, held in an electrically conducting melt, driven by the combined action of buoyancy, surface-tension, and electromagnetic forces. The lattice Boltzmann method (LBM) is relatively novel and contrasts with the usual well-known methods to physical modeling in the domain of computational fluid dynamics (CFD). Indeed, the LBM describes the fluid (i.e. lattice fluid) at a microscopic level (molecular) and proposes models for the collision between molecules. The full continuum-level physics (i.e. the macroscopic hydrodynamic fields) is implicitly contained in the LB model. Indeed those macroscopic quantities are defined as moments of the so-called particle distribution functions. In the present work, a two-dimensions (2D) LBE-based model is developed to the simulation of convection melt flow driven by the combination of natural buoyancy, surface tension, and electromagnetic forces. The model is applied to numerical modeling of the problems of buoyancy, surface-tension, and electromagnetic driven convection melt flow in an enclosure. The melt system used has a low Prandtl number, which is appropriate to crystal growth melts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-150

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dost, S.; Lent, B. (2007): Single Crystal Growth of Semiconductors from Metallic Solutions. (Elsevier, Amsterdam, the Netherlands 2007).

DOI: 10.1016/b978-044452232-0/50005-5

Google Scholar

[2] Mechighel, F. (2013): Modélisation de la convection lors d'un changement de phase : Stabilisation par champ magnétique, ISBN 978-3-8381-7977-3, (ed. Morel P.) (Presses Académiques Francophones PAF,, Saarbrücken, Germany).

Google Scholar

[3] Kuhlmann, H.C. (1999): Thermocapillary Convection in Models of Crystal Growth. (Springer-Verlag, New York).

Google Scholar

[4] Kawamura, H.; Ueno, I. (2006).

Google Scholar

[5] Hossain, M.A.; Hafiz, M.Z.; Rees, D.A.S. (2005): Buoyancy and thermocapillary driven convection flow of an electrically conducting fluid in an enclosure with heat generation, International Journal of Thermal Sciences, vol. 44, p.676–684.

DOI: 10.1016/j.ijthermalsci.2004.11.005

Google Scholar

[6] Sampath, R.; Zabaras, N. (2001).

Google Scholar

[7] Nakajima, K.; Yasuhiro, S.; Mizoguchi, S.; Imaishi, N. (2003).

Google Scholar

[8] Amberg, G.; Shiomi, J. (2005): Thermo-capillary flow and phase change in some widespread materials processes, FDMP, Fluid Dynamics & Materials Processing, vol. 1, no.1, pp.81-95.

Google Scholar

[9] Martin Witkowski L.; Walker, J.S. (2002): Solutocapillary instabilities in liquid bridges. Physics of Fluids, vol.14, no. 8, pp.2647-2656.

DOI: 10.1063/1.1488598

Google Scholar

[10] Samanta, Deep (2006): Computational techniques for the analysis and control of alloy solidification processes, PhD thesis, Cornell University, USA.

Google Scholar

[11] Lyubimova, T.P.; Skuridin, R.V.; Faizrakhmanova, I.S. (2007): Thermo- and soluto-capillary convection in the floating zone process in zero gravity conditions. Journal of Crystal Growth, vol. 303, p.274–278.

DOI: 10.1016/j.jcrysgro.2006.12.012

Google Scholar

[12] Lappa, Marcello (2005): Review: Possible strategies for the control and stabilization of Marangoni flow in laterally heated floating zones. FDMP, Fluid Dynamics & Materials Processing, vol.1, no.2, pp.171-187.

Google Scholar

[13] Deal, A. (2004): Enhanced morphological stability in Sb-doped Ge single crystals, PhD thesis, Florida University, USA.

Google Scholar

[14] Armour, N.; Dost, S.; Lent, B. (2007): Effect of free surface and gravity on silicon dissolution in germanium melt. Journal of Crystal Growth, vol. 299, p.227–233.

DOI: 10.1016/j.jcrysgro.2006.11.240

Google Scholar

[15] Tagaya, E.; Ueno, I.; Kawamura, H. (2003): A consideration on relation between oscillatory Marangoni flow in a liquid bridge and the hydrothermal wave in a thin liquid film. Thermal Science and Engineering, vol. 11, pp.45-46.

Google Scholar

[16] Matsumoto, S.; Hayashida, H.; Natsui, H.; Yoda, S.; Imaishi, N. (2004): Transition phenomena on Marangoni convection in low Pr number liquid bridge. Thermal Sci. Eng., vol. 12, pp.21-22.

Google Scholar

[17] Chen, J.C.; Huang, Y.C. (1990): Thermocapillary flows of surface melting due to a moving heat flux. Internat. J. Heat Mass Transfer, vol. 34, p.663–671.

DOI: 10.1016/0017-9310(91)90114-t

Google Scholar

[18] Ozoe, H.; Szmyd, J.S; Tagawa, T. (2007): Magnetic Fields in Semiconductor Crystal Growth. S. Molokov et al. (eds.), Magnetohydrodynamics – Historical Evolution and Trends, 375–390 Springer.

DOI: 10.1007/978-1-4020-4833-3_23

Google Scholar

[19] Mechighel, F.; El Ganaoui, M.; Kadja, M.; Pateyron, B.; Dost, S. (2009).

Google Scholar

[20] Ma, N.; Walker, J.S. (2006): Electromagnetic Stirring in Crystal Growth Processes. FDMP: Fluid Dynamics & Materials Processing. vol. 2, no. 2, pp.119-126.

Google Scholar

[21] Kakimoto, K.; Liu, L. (2006): Flow Instability of Silicon Melt in Magnetic Fields: FDMP: Fluid Dynamics & Materials Processing. vol. 2, no. 3, pp.167-174.

Google Scholar

[22] Mechighel, F.; Armour, N.; Dost, S.; Kadja, M. (2011): Mathematical modeling of the dissolution process of silicon into germanium melt. TWMS: J. App. Eng. Math., vol.1, no.2, 2011, pp.127-149.

Google Scholar

[23] Zheng, L.; Guo, Z.; Shi, B.; Zheng, C. (2010a): Lattice Boltzmann Method for Thermocapillary Flows, Adv. Appl. Math. Mech., vol. 2, no. 5, pp.677-684.

Google Scholar

[24] Peng, Y.; Shu, C.; Chew, Y.T.; Qiu, J. (2003): Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method. J. Comput. Phys., vol. 186, p.295–307.

DOI: 10.1016/s0021-9991(03)00067-6

Google Scholar

[25] Chang, Q.; Alexander, J.I.D. (2007): Study of Marangoni-natural convection in a two-layer liquid system with density inversion using a lattice Boltzmann model. Phys. Fluids, vol. 19, p.102107/1-11.

DOI: 10.1063/1.2784530

Google Scholar

[26] Thürey, N.; Rüde, U. (2009): Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids, Comput. Visual Sci., vol. 12, pp.247-263.

DOI: 10.1007/s00791-008-0090-4

Google Scholar

[27] Swift, M.R.; Orlandi, E.; Osborn, W.R.; Yeomans, J.M. (1996): Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev., vol. E54, p.5041–5052.

DOI: 10.1103/physreve.54.5041

Google Scholar

[28] Miller, W.; Succi, S.; Mansutti, D. (2001): Lattice Boltzmann Model for Anisotropic Liquid-Solid Phase Transition. Physical review letters, vol. 86, no. 16, pp.3578-3581.

DOI: 10.1103/physrevlett.86.3578

Google Scholar

[29] Zheng, L.; Guo, Z.L.; Shi, B.C.; Zheng, C.G. (2010b): Lattice Boltzmann equation for axisymmetric thermal flows. Comput. Fluids, vol. 39, p.945–952.

DOI: 10.1016/j.compfluid.2010.01.006

Google Scholar

[30] Mai, H-C.; Lin, K-H.; Yang, C-H.; Lin, C-A. (2010): A Thermal Lattice Boltzmann Model for Flows with Viscous Heat Dissipation, CMES-Computer Modeling in Engineering & Sciences, vol.61, no.1, pp.45-63.

Google Scholar

[31] Ho, C-F.; Chang, C.; Lin, K-H.; Lin, C-A. (2009): Consistent Boundary Conditions for 2D and 3D Lattice Boltzmann Simulations, CMES-Computer Modeling in Engineering & Sciences, vol.44, no.2, pp.137-155.

Google Scholar

[32] Niu, X.; Yamaguchi, H.; Iwamoto, Y.; Zhang, X.; Li, M.; Iwamoto, Y. (2010): Study of Forced Convection Heat Transfer of Supercritical CO2 in a Horizontal Channel by Lattice Boltzmann Method. Adv. Appl. Math. Mech., vol. 2, no. 5, pp.564-572.

DOI: 10.4208/aamm.10-10s03

Google Scholar

[33] Yang, C-H.; Chang, C.; Lin, CA. (2009): A Direct Forcing Immersed Boundary Method Based Lattice Boltzmann Method to Simulate Flows with Complex Geometry, CMC-Computers Materials & Continua, vol.11, no. 3, pp.209-228.

Google Scholar

[34] Cosgrove, J.A.; Buick, J.M.; Tonge, S.J.; Munro, C.G.; Greated, C.A.; Campbell, D.M. (2003): Application of the lattice Boltzmann method to transition in oscillatory channel flow. J. Phys. A: Math. Gen., vol. 36, p.2609–2620.

DOI: 10.1088/0305-4470/36/10/320

Google Scholar

[35] Chen, S.; Wang, Z.; Shan, X.; Doolen, G.D. (1992): Lattice Boltzmann Computational Fluid Dynamics in Three Dimensions, Journal of Statistical Physics, vol. 68, nos. 3/4, pp.379-400.

DOI: 10.1007/bf01341754

Google Scholar

[36] Kandhai, D.; Koponen, A.; Hoekstra, A.G.; Kataja, M.; Timonen, J.; Sloot, P.M.A. (1999): Implementation Aspects of 3D Lattice-BGK: Boundaries, Accuracy, and a New Fast Relaxation Method. Journal of Computational Physics, vol. 150, p.482–501.

DOI: 10.1006/jcph.1999.6191

Google Scholar

[37] Bernsdorf, J.M. (2008): Simulation of Complex Flows and Multi-Physics with the Lattice-Boltzmann Method, PhD thesis, University of Amsterdam & Erlangen, Duistland, Germany.

Google Scholar

[38] Pan, C.; Prins, J.F.; Miller, C.T. (2004): A high-performance lattice Boltzmann implementation to model flow in porous media. Computer Physics Communications, vol. 158, p.89–105.

DOI: 10.1016/j.cpc.2003.12.003

Google Scholar

[39] Succi, S. (2001): The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon press, Oxford.

Google Scholar

[40] Lätt, J. (2007): Hydrodynamic Limit of Lattice Boltzmann Equations, PhD thesis, University of Geneva.

Google Scholar

[41] Mohamad, A.A. (2007): Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer. Sure Print, Dalbrent, Calgary.

DOI: 10.1002/cjce.5450850617

Google Scholar

[42] Lallemand, P.; Luo, L.S. (2000): Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E, vol. 61, no.6, pp.6546-6562.

DOI: 10.1103/physreve.61.6546

Google Scholar

[43] Ansumali, S. (2004): Minimal Kinetic Modeling of Hydrodynamics, PhD thesis, Swiss Federal Institute of Technology Zurich.

Google Scholar

[44] Luo, Li-Shi (1993): Lattice-Gas Automata and Lattice Boltzmann Equations for Two-Dimensional Hydrodynamics, PhD thesis, Georgia Institute of Technology.

Google Scholar

[45] Mechighel, F.; Dost, S.; El Ganaoui, M. (2018).

Google Scholar

[46] COMSOL user manual modeling, theory, (2007).

Google Scholar

[47] Yildiz, M. (2005): A Combined Experimental and Modeling Study for the Growth of SixGe1-x Single Crystals by Liquid Phase Diffusion (LPD), PhD thesis, University of Victoria, Canada.

Google Scholar