[1]
K. Cho, S. Cho, Seismic response of cylindrical steel tanks considering fluid-structure interaction, Steel Structures. 7 (2007) 147–152.
Google Scholar
[2]
M. De Angelis, R. Giannini, F. Paolacci, Experimental investigation on the seismic response of a steel liquid storage tank equipped with floating roof by shaking table tests, Earthquake Engineering & Structural Dynamics. 39(4) (2009) 377–396.
DOI: 10.1002/eqe.945
Google Scholar
[3]
M. Chiba, Nonlinear hydroelastic vibration of a cylindrical tank with elastic bottom containing liquid. Part I Experiment, J Fluid Struct. 6(2) (1992) 181-206.
DOI: 10.1016/0889-9746(92)90044-4
Google Scholar
[4]
D. Burkacki, R. Jankowski, Experimental study on steel tank model using shaking table, Civil and environmental engineering reports. 14 (3) (2014) 37-47.
DOI: 10.1515/ceer-2014-0024
Google Scholar
[5]
J. H. Park, D. Bae, C. K. Oh, Experimental Study on the Dynamic Behavior of a Cylindrical Liquid Storage Tank subjected to Seismic Excitation, International journal of steel structures. 16(3) (2016) 935-945.
DOI: 10.1007/s13296-016-0172-y
Google Scholar
[6]
J. Radnić, N. Grgić, M. Sunara Kusić, A. Harapin, Shake table testing of an open rectangular water tank with water sloshing, Journal of Fluids and Structures. 81 (2018) 97–115.
DOI: 10.1016/j.jfluidstructs.2018.04.020
Google Scholar
[7]
M. Sunara Kusić, J. Radnić, N. Grgić, A. Harapin, Sloshing in medium size tanks caused by earthquake studied by SPH, Građevinar. 70(8) (2018), 671-684.
DOI: 10.1016/j.jfluidstructs.2018.04.020
Google Scholar
[8]
M. Sunara Kusić, J. Radnić, N. Grgić, A. Harapin, Numerical Model for Fluid-Structure Interaction, Int. Jour. For Num. Mod. (accepted for publishing).
Google Scholar
[9]
G. Hou, J. Wang, A. Layton, Numerical Methods for Fluid-Structure Interaction - A Review, Commun. Comput. Phys. 12(2) (2012) 337-377.
DOI: 10.4208/cicp.291210.290411s
Google Scholar
[10]
C.J.K. Lee, H. Noguchi, S. Koshizuka, Fluid–shell structure interaction analysis by coupled particle and finite element method, Comput Struct. 85 (2007) 688–697.
DOI: 10.1016/j.compstruc.2007.01.019
Google Scholar
[11]
E. H. Dowell, K. C. Hall, Modelling of fluid-structure interaction, Annual Review of Fluid Mechanics. 33 (2001) 445-490.
Google Scholar
[12]
J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, J. Vierendeels, Performance of partitioned procedures in fluid–structure interaction, Computers and Structures. 88 (2010) 446–457.
DOI: 10.1016/j.compstruc.2009.12.006
Google Scholar
[13]
J. Degroote, K.J. Bathe, J. Vierendeels, Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction, Computers and Structures. 87 (2009) 793–801.
DOI: 10.1016/j.compstruc.2008.11.013
Google Scholar
[14]
G.R. Liu, M.B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, (2003).
DOI: 10.1142/9789812564405
Google Scholar
[15]
M. Kelager, Lagrangian Fluid Dynamics Using Smoothed Particle Hydrodynamics, DIKU, University of Copenhagen (2006).
Google Scholar
[16]
E. Onate, S.R. Idelsohn, F. Del Pin, R. Aubry, The particle finite element method, An overview, Int J Comput Method. 1(2) (2004) 267–307.
DOI: 10.1142/s0219876204000204
Google Scholar
[17]
A. Colagrossi, M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physics. 191 (2003) 448-475.
DOI: 10.1016/s0021-9991(03)00324-3
Google Scholar
[18]
A. J. C. Crespo, M. Gómez-Gesteira, R.A. Dalrymple, Boundary Conditions Generated by Dynamic Particles in SPH Methods, Tech Science Press. 5(3) (2007) 173-184.
Google Scholar
[19]
H.-C. Huang, Static and Dynamic Analysis of Plates and Shells, Springer-Verlag, (1989).
Google Scholar
[20]
J. Radnić, A. Harapin, D.Matešan, Model for Static Analyses of Concrete Shells, Engineering Modelling. 14(3-4) (2000) 93-99.
Google Scholar
[21]
Radnić J, Harapin A, Matešan D. Geometrical nonlinearity model in static analysis of shells, Gradjevinar. 55(10) (2003) 583-589 (in Croatian).
Google Scholar
[22]
K.J. Bathe, E.N. Dvorkin, A formulation of general shell elements – The use of mixed interpolation of tensorial components, Int J Numer Meth Eng. 22 (1986) 697–722.
DOI: 10.1002/nme.1620220312
Google Scholar
[23]
A.J.C. Crespo, Application of the Smoothed Particle Hydrodynamics model SPHysics to free-surface hydrodynamics, PhD thesis, University of Vigo, Department of Applied Physics, Spain, (2008).
Google Scholar
[24]
J.R. Shao, H.Q. Li, G.R. Liu, M.B. Liu, An improved SPH method for modelling liquid sloshing dynamics, Computers and Structures. 100-101 (2012) 18–26.
DOI: 10.1016/j.compstruc.2012.02.005
Google Scholar