Growth of ZnO Nanorods by Template-Free Sol-Gel Dip-Coating Technique: Effect of Pre-Annealing Temperature

Article Preview

Abstract:

In this work, we studied the effect of pre-heating temperature on the structural and optical properties of ZnO nanorods grown by free template sol-gel dip-coating technique. The prepared films were pre-heated at different temperatures: 240, 260, 280 and 300 °C, then annealed at 500 °C for one hour. The structural properties of the prepared samples were investigated by X-ray diffraction (XRD) and the surface morphologies were studied by scanning electron microscope (SEM). The optical properties were studied by means of UV-Visible spectrophotometer. The XRD diffraction spectra show that all the prepared samples have a ZnO wurtzite structure with a preferential orientation along (002) axis. SEM micrographs revealed the formation of well-aligned ZnO nanorods for the sample preheated at 280 °C. The prepared ZnO nanorod structured thin films are highly transparent in the visible region with an average transmittance above 85 % in the 400–800 nm wavelength range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-117

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q.J. Yu, W.Y. Fu, C.L. Yu, H.B. Yang, R.H. Wei, M.H. Li, S.K. Liu, Y.M. Sui, Z.L. Liu, M.X. Yuan, G.T. Zou, J. Phys. Chem. C 111 (2007) 17521–17526.

DOI: 10.1021/jp076159g

Google Scholar

[2] K.M. Sandeep, S. bhat, S.M. Dharmaprakash, Journal of Physics and Chemistry of Solids 104 (2017) 36-44.

Google Scholar

[3] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292 (2001) 1897–1899.

DOI: 10.1126/science.1060367

Google Scholar

[4] C. Gu, L. Shanshan, J. Huang, C. Shi, J. Liu, Sensors and Actuators B 177 (2013) 453–459.

Google Scholar

[5] A. Becheri, M. Du€rr, P.L. Nostro, P. Baglioni, J. Nanopart. Res. 10 (2008) 679–689.

Google Scholar

[6] D. V. Pandi, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, Materials Letters 223 (2018) 227-230.

DOI: 10.1016/j.matlet.2018.04.022

Google Scholar

[7] C-M. Chou, Y-C Chang, P-S. Lin, F-K. Liu, Materials Chemistry and Physics 201 (2017) 18-25.

Google Scholar

[8] C. Rodwihok, S. Choopun, P. Ruankham, A. Gardchareon, S. Phadungdhitidhada, D. Wongratanaphisan, Applied Surface Science 477 (2019) 159-165.

DOI: 10.1016/j.apsusc.2017.11.056

Google Scholar

[9] N. H. Alvi, Wasied ul Hassan, B. Farooq, O. Nur, M. Willander, Materials Letters 106 (2013) 158-163.

Google Scholar

[10] M.C.M. Angub, C.J.T. Vergara, H.A.F. Husay, A.A. Salvador, M.J.F. Empizo, K. Kawano, Y. Minami, T. Shimizu, N. Sarukura, A.S. Somintac, Journal of Luminescence 203 (2018) 427-435.

DOI: 10.1016/j.jlumin.2018.05.062

Google Scholar

[11] S. Kumar, P. D. Sahare, S. Kumar, Materials Research Bulletin 105 (2018) 237-245.

Google Scholar

[12] J.M. Nedelec, L. Courtheoux, E. Jallot, C. Kinowski, J. Lao, P. Laquerriere, C. Mansuy, G. Renaudin, S. Turrell, J. Sol–gel Sci. Technol. 46 (2008) 259–271.

DOI: 10.1007/s10971-007-1665-0

Google Scholar

[13] G. Kenanakis, D. Vernardou, E. Koudoumas, N. Katsarakis, J. Cryst. Growth 311 (2009) 4799–4804.

Google Scholar

[14] N. Huang, M.W. Zhu, L.J. Gao, J. Gong, C. Sun, X. Jiang, Applied Surface Science 257 (2011) 6026–6033.

Google Scholar

[15] N. Singh, P. Pandey, F. Z. Haque, Optik 123 (2012) 1340–1342.

Google Scholar

[16] M.W. Zhu, N. Huang, J. Gong, B. Zhang, Z.J. Wang, C. Sun, X. Jiang, Appl Phys A 103 (2011) 159–166.

Google Scholar

[17] F. Paraguay, D.J. Morales, W. Estrada, L.E. Andrade, M. Miki Yoshida, Thin Solid Films 366 (2000) 16-27.

DOI: 10.1016/s0040-6090(00)00752-5

Google Scholar