Tribological Considerations when Modelling Tool Wear in Turning of 15-5PH Stainless Steel

Article Preview

Abstract:

The present work proposes to emphasize the effects of friction and wear formulations for wear prediction for turning operations. It is shown that friction models play a major role on local variables such as pressure, sliding speed and temperature (σn, Vsl, T) and thus on the simulated tool wear. This work highlights that both formulations and parameters of these equations should be carefully considered to achieve an actual predictive capability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.J. Arrazola, T. Ozel, D. Umbrello, M. Davies, I.S. Jawahir, Recent advances in modelling of metal machining processes. CIRP Annals 62, 695–718. (2013).

DOI: 10.1016/j.cirp.2013.05.006

Google Scholar

[2] J.F. Archard, Contact and Rubbing of Flat Surfaces. Journal of Applied Physics 24, 981 (1953).

DOI: 10.1063/1.1721448

Google Scholar

[3] E. Usui, T. Shirakashi, T. Kitagawa, Analytical prediction of cutting tool wear. Wear 100, 129-151 (1984).

DOI: 10.1016/0043-1648(84)90010-3

Google Scholar

[4] L.-J. Xie, J. Schmidt, C. Schmidt, F. Biesinger, 2D FEM estimate of tool wear in turning operation. Wear 258 1479–1490 (2005).

DOI: 10.1016/j.wear.2004.11.004

Google Scholar

[5] T.H.C. Childs, Friction modelling in metal cutting. Wear 260, 310–318 (2006).

DOI: 10.1016/j.wear.2005.01.052

Google Scholar

[6] T. Ozel, The influence of friction models on finite element simulations of machining. International Journal of Machine Tools and Manufacture 46, 518 – 530 (2006).

DOI: 10.1016/j.ijmachtools.2005.07.001

Google Scholar

[7] L. Filice, F. Micari, S. Rizzuti, and D. Umbrello, A critical analysis on the friction modelling in orthogonal machining. International Journal of Machine Tools and Manufacture 47, 709 – 714 (2007).

DOI: 10.1016/j.ijmachtools.2006.05.007

Google Scholar

[8] J. Rech, A. Giovenco, C. Courbon, F. Cabanettes, Toward a new tribological approach to predict cutting tool wear. CIRP Annals-Manufacturing Technology (2018).

DOI: 10.1016/j.cirp.2018.03.014

Google Scholar

[9] A. Mondelin, F. Valiorgue, J. Rech, M. Coret, & E. Feulvarch, Hybrid model for the prediction of residual stresses induced by 15-5PH steel turning. International Journal of Mechanical Sciences, 58, 69–85 (2012).

DOI: 10.1016/j.ijmecsci.2012.03.003

Google Scholar

[10] A. Giovenco, C. Courbon, F. Cabanettes, J.Rech, U.Masciantonio, H. Karaouni, E. D'Eramo, A. Van Robaeys, E. Jourden, Importance of the contact interface definition in the numerical simulation of tool wear in metal cutting. AIP Conference Proceedings. (2019).

DOI: 10.1063/1.5112615

Google Scholar

[11] C. Courbon, T. Mabrouki, J. Rech, D. Mazuyer, E. D'Eramo, On the existence of a thermal contact resistance at the tool-chip interface in dry cutting of AISI 1045: Formation mechanisms and influence on the cutting process. CIRP Annals-Manufacturing Technology (2013).

DOI: 10.1016/j.applthermaleng.2012.06.047

Google Scholar

[12] R.K. Rajan, H. Kumar, S.K. Albert, T.R. Vijayaram, Sliding friction and wear characteristics of grade 410 martensitic stainless steel. Applied Mechanics and Materials Vols. 592-594 pp.1346-1351 (2014).

DOI: 10.4028/www.scientific.net/amm.592-594.1346

Google Scholar

[13] Mahesha N. S., Hanumantharaya R., Mahesh B. Davanageri, Ramakrishna Devananda P., Shivakumar K.M., Tribological Wear Behavior of AISI 630 (17-4 PH) Stainless Steel Hardened by Precipitation Hardening, American Journal of Materials Science, Vol. 6, pp.6-14 (2016).

Google Scholar

[14] Attanasio, A., Ceretti, E., Fiorentino, A., Cappellini, C., Giardini, C. , Investigation and FEM-based simulation of tool wear in turning operations with uncoated carbide tools, Wear, 269/5–6: 344–350 (2010).

DOI: 10.1016/j.wear.2010.04.013

Google Scholar

[15] Hosseinkhani, K., Ng, E., A combined empirical and numerical approach for tool wear prediction in machining, Procedia CIRP, 31:304–309, (2015).

DOI: 10.1016/j.procir.2015.03.087

Google Scholar