[1]
M. Khaled, F. Harambat, H. El Hage, and H. Peerhossaini, Spatial optimization of underhood cooling module – towards an innovative control approach, Applied Energy, 88 (2011) 3841-3849.
DOI: 10.1016/j.apenergy.2011.04.025
Google Scholar
[2]
M. Khaled, F. Harambat, and H. Peerhossaini, Towards the control of car underhood thermal conditions, Applied Thermal Engineering, 31 (2011) 902-910.
DOI: 10.1016/j.applthermaleng.2010.11.013
Google Scholar
[3]
M. Khaled, F. Harambat, and H. Peerhossaini, Temperature and Heat Flux Behavior of Complex Flows in Car Underhood Compartment, Heat Transfer Engineering, 31-13 (2010) 1-11.
DOI: 10.1080/01457631003640321
Google Scholar
[4]
R. Taher, M.M. Ahmed, Z. Haddad, and C. Abid, Poiseuille-Rayleigh-Bénard mixed convection flow in a channel: Heat transfer and fluid flow patterns. International Journal of Heat and Mass Transfer, 180 (2021) 121745.
DOI: 10.1016/j.ijheatmasstransfer.2021.121745
Google Scholar
[5]
R. Taher and C. Abid, (2017). Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow. Heat and Mass Transfer, 54-5 (2017) 1453-1466.
DOI: 10.1007/s00231-017-2220-3
Google Scholar
[6]
S. Amiri, R. Taher, and L.G. Mongeau, Experimental study of the oscillatory velocity and temperature near a heated circular cylinder in an acoustic standing wave. International Journal of Heat and Mass Transfer, 69 (2014) 464–472.
DOI: 10.1016/j.ijheatmasstransfer.2013.10.039
Google Scholar
[7]
C. Habchi, A. Ghanem, T. Lemenand, D. Della Valle, H. Peerhossaini, Mixing performance in Split-And-Recombine Milli-Static Mixers—A numerical analysis, Chemical Engineering Research and Design, 142 (2019) 298–306.
DOI: 10.1016/j.cherd.2018.12.010
Google Scholar
[8]
T. Hassana, C. Habchi, T. Lemenand, F. Azizi, CFD simulation of creeping flows in a novel split-and-recombine multifunctional reactor, Chemical Engineering and Processing - Process Intensification, 162 (2021) 108353.
DOI: 10.1016/j.cep.2021.108353
Google Scholar
[9]
K. Faraj, J. Faraj, F. Hachem, H. Bazzi, M. Khaled, and Cathy Castelain, Analysis of underfloor electrical heating system integrated with coconut oil-PCM plates, Applied Thermal Engineering, 158 (2019) 113778.
DOI: 10.1016/j.applthermaleng.2019.113778
Google Scholar
[10]
H. Jaber, M. Ramadan, T. Lemenand, and M. Khaled, Domestic Thermoelectric Cogeneration System: Optimization Analysis, Energy Consumption and CO2 Emissions Reduction, Applied Thermal Engineering, 130 (2018) 279-295.
DOI: 10.1016/j.applthermaleng.2017.10.148
Google Scholar
[11]
J. Zheng, W. Zheng, A. Chen, J. Yao, Y. Ren, C. Zhou, J. Wu, W. Ling, B. Bai, W. Wang, and Z. Zhang, Sustainability of unconventional machining industry considering impact factors and reduction methods of energy consumption: A review and analysis, Science of the Total Environment, 722 (2020) 137897.
DOI: 10.1016/j.scitotenv.2020.137897
Google Scholar
[12]
F. Razi and I. Dincer, Renewable energy development and hydrogen economy in MENA region: A review, Renewable and Sustainable Energy Reviews, 168 (2022) 112763.
DOI: 10.1016/j.rser.2022.112763
Google Scholar
[13]
G.S. Thirunavukkarasu, M. Seyedmahmoudian, E. Jamei, B. Horan, S. Mekhilef, and A. Stojcevski, Role of optimization techniques in microgrid energy management systems—A review, Energy Strategy Reviews, 43 (2022) 100899.
DOI: 10.1016/j.esr.2022.100899
Google Scholar
[14]
M. Khaled, M. Ramadan, and H. El Hage, Parametric analysis of heat recovery from exhaust gases of generators, Energy Procedia, 75 (2015) 3295-3300.
DOI: 10.1016/j.egypro.2015.07.710
Google Scholar
[15]
W.J. Du, Q. Yin, and L. Cheng, Experiments on novel heat recovery systems on rotary kilns, Applied Thermal Engineering, 139 (2018) 535-541.
DOI: 10.1016/j.applthermaleng.2018.04.125
Google Scholar
[16]
A. Mahmoudi, M. Fazli, and M. R. Morad, A recent review of waste heat recovery by Organic Rankine Cycle, Applied Thermal Engineering, 143 (2018) 660-675.
DOI: 10.1016/j.applthermaleng.2018.07.136
Google Scholar
[17]
A. Akbari, S. Kouravand, and G. Chegini, Experimental analysis of a rotary heat exchanger for waste heat recovery from the exhaust gas of dryer, Applied Thermal Engineering, 138 (2018) 668-674.
DOI: 10.1016/j.applthermaleng.2018.04.103
Google Scholar
[18]
G.Shu, J. Zhao, H. Tian, X. Liang, H. Wei. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy (2012); 45:806–16.
DOI: 10.1016/j.energy.2012.07.010
Google Scholar
[19]
Orr B, Singh B, Tan L, Akbarzadeh A. Electricity generation from an exhaust heat recovery system utilising thermoelectric cells and heat pipes. Applied Thermal Engineering (2014); 73: 586–95
DOI: 10.1016/j.applthermaleng.2014.07.056
Google Scholar
[20]
Niu Z, Diao H, Yu S, Jiao K, Du Q, Shu G. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine. Energy Conversion Management (2014); 85:85–101.
DOI: 10.1016/j.enconman.2014.05.061
Google Scholar
[21]
He W, Wang S, Zhang X, Li Y, Lu C. Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat. Energy (2015); 91:1–9.
DOI: 10.1016/j.energy.2015.08.022
Google Scholar
[22]
D. Champier, J. Bédécarrats, T. Kousksou, M. Rivaletto, F. Strub, P. Pignolet. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy (2011); 36: 1518–26.
DOI: 10.1016/j.energy.2011.01.012
Google Scholar
[23]
Montecucco A, Siviter J, Knox AR. Combined heat and power system for stoves with thermoelectric generators. Applied Energy (2017); 185:1336–42.
DOI: 10.1016/j.apenergy.2015.10.132
Google Scholar
[24]
Gao HB, Huang GH, Li HJ, Qu ZG, Zhang YJ. Development of stove-powered thermoelectric generators: A review. Applied Thermal Engineering (2016); 96:297–310.
DOI: 10.1016/j.applthermaleng.2015.11.032
Google Scholar
[25]
Durand T, Dimopoulos P, Tang Y, Liao Y, Landmann D. Potential of energy recuperation in the exhaust gas of state of the art light duty vehicles with thermoelectric elements. Fuel (2018); 224:271–9.
DOI: 10.1016/j.fuel.2018.03.078
Google Scholar
[26]
Chinguwa S, Musora C, Mushiri T. The design of portable refrigerator powered by exhaust heat using thermoelectric. Procedia Manuf (2018); 21:741–8.
DOI: 10.1016/j.promfg.2018.02.179
Google Scholar
[27]
He W, Wang S, Yue L. High net power output analysis with changes in exhaust temperature in a thermoelectric generator system. Applied Energy (2017).
DOI: 10.1016/j.apenergy.2016.12.078
Google Scholar
[28]
Li B, Huang K, Yan Y, Li Y, Twaha S, Zhu J. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles. Applied Energy (2017); 205:868–79.
DOI: 10.1016/j.apenergy.2017.08.092
Google Scholar
[29]
H. Ma, C. Lin, H. Wu, C. Peng, C. Hsu. Waste heat recovery using a thermoelectric power generation system in a biomass gasifier. Applied Thermal Engineering. (2015); 88:274–9.
DOI: 10.1016/j.applthermaleng.2014.09.070
Google Scholar
[30]
Jaber H, Khaled M, Lemenand T, Faraj J, Bazzi H, Ramadan M. Effect of Exhaust Gases Temperature on the Performance of a Hybrid Heat Recovery System. Energy Procedia (2017); 119: 775–82.
DOI: 10.1016/j.egypro.2017.07.110
Google Scholar
[31]
Vale S, Heber L, Coelho PJ, Silva CM. Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation. Energy Conversion Management (2017); 133:167–77.
DOI: 10.1016/j.enconman.2016.11.064
Google Scholar
[32]
Kim TY, Negash AA, Cho G. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Conversion Management (2016); 124:280–6.
DOI: 10.1016/j.enconman.2016.07.013
Google Scholar
[33]
In B, Kim H, Son J, Lee K. The study of a thermoelectric generator with various thermal conditions of exhaust gas from a diesel engine. International Journal of Heat Mass Transfer (2015); 86:667–80.
DOI: 10.1016/j.ijheatmasstransfer.2015.03.052
Google Scholar
[34]
Shu G, Zhao J, Tian H, Liang X, Wei H. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy (2012); 45:806–16.
DOI: 10.1016/j.energy.2012.07.010
Google Scholar
[35]
X. Gao, S. Andreasen, M. Chen, S. Kaer. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery. International Journal of Hydrogen Energy (2012); 37:8490–8.
DOI: 10.1016/j.ijhydene.2012.03.009
Google Scholar
[36]
F. Tohidi, S.G. Holagh, and A. Chitsaz, Thermoelectric Generators: A comprehensive review of characteristics and applications, Applied Thermal Engineering, 201 (2022) 117793.
DOI: 10.1016/j.applthermaleng.2021.117793
Google Scholar
[37]
S. Shoeibi, H. Kargarsharifabad, M. Sadi, A. Arabkoohsar, and S. A. A. Mirjalily, A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications, Sustainable Energy Technologies and Assessments, 52 (2022) 102105.
DOI: 10.1016/j.seta.2022.102105
Google Scholar
[38]
Z. Wehbi, R. Taher, J. Faraj, C. Castelain, and M. Khaled, Hybrid thermoelectric generators-renewable energy systems: A short review on recent developments,Energy Reports, 8 (2022) 1361-1370.
DOI: 10.1016/j.egyr.2022.08.068
Google Scholar
[39]
R. Aridi, J. Faraj, S. Ali, T. Lemenand, and M. khaled, A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems, Renewable and Sustainable Energy Reviews, 167 (2022) 112669.
DOI: 10.1016/j.rser.2022.112669
Google Scholar
[40]
F. Zhang, X. Wang, X. Hou, C. Han, M. Wu, and Z. Liu, Variance-based global sensitivity analysis of a hybrid thermoelectric generator fuzzy system, Applied Energy, 307 (2022) 118208.
DOI: 10.1016/j.apenergy.2021.118208
Google Scholar
[41]
M. Gharzi, A. M. Kermani, and H. T. Shamsabadi, Experimental investigation of a parabolic trough collector-thermoelectric generator (PTC-TEG) hybrid solar system with a pressurized heat transfer fluid, Renewable Energy, 202 (2023) 270-279.
DOI: 10.1016/j.renene.2022.11.110
Google Scholar
[42]
M. Ramadan, S. Ali, H. Bazzi, and M. Khaled, New hybrid system combining TEG, condenser hot air and exhaust airflow of all-air HVAC systems, Case Studies in Thermal Engineering, 10 (2017) 154-160.
DOI: 10.1016/j.csite.2017.05.007
Google Scholar
[43]
A. Faraj, H. Jaber, K. Chahine, J. Faraj, M. Ramadan, H. El Hage, and M. Khaled, New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study, Entropy, 22 (2020) 1-16.
DOI: 10.3390/e22050503
Google Scholar
[44]
Incorpera, F.P. and DeWitt, D.P. 2007. Fundamentals of heat and mass transfer. Sixth Edition. John Wiley & Sons.
Google Scholar
[45]
https://customthermoelectric.com/media/wysiwyg/TEG_spec_sheets/1261G-7L31-04CQ_20140514_spec_sht.pdf.
Google Scholar
[46]
https://thermoelectric-generator.com/wp-content/uploads/2014/04/SpecTEG1-12611-6.0Thermoelectric-generator1.pdf.
Google Scholar