New Concept of Power Generation from TEGs Using the Sun Irradiation and Oil Tanks – Thermal Modeling and Parametric Study

Article Preview

Abstract:

In this manuscript, a new concept of power generation from thermoelectric generators TEGs using the sun irradiation and two oil tanks, one hot and one cold, is proposed. It consists of two oil tanks separated by a plate covering several TEGs in series. The oil tank at the bottom of the system constitutes a cold convection condition for the TEGs plate; on the other hand, the upper oil tank accounts for a hot convection condition since its upper surface is transparent and therefore subjected to the sun irradiation that will heat up the oil. To test the feasibility of this concept, an appropriate thermal modeling is developed and associated parametric analysis was carried out. It shows that powers up to 242 W can be generated with a system having a hot oil tank height of 0.2 m along with a width and length of 2 m each.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-139

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Khaled, F. Harambat, H. El Hage, and H. Peerhossaini, Spatial optimization of underhood cooling module – towards an innovative control approach, Applied Energy, 88 (2011) 3841-3849.

DOI: 10.1016/j.apenergy.2011.04.025

Google Scholar

[2] M. Khaled, F. Harambat, and H. Peerhossaini, Towards the control of car underhood thermal conditions, Applied Thermal Engineering, 31 (2011) 902-910.

DOI: 10.1016/j.applthermaleng.2010.11.013

Google Scholar

[3] M. Khaled, F. Harambat, and H. Peerhossaini, Temperature and Heat Flux Behavior of Complex Flows in Car Underhood Compartment, Heat Transfer Engineering, 31-13 (2010) 1-11.

DOI: 10.1080/01457631003640321

Google Scholar

[4] R. Taher, M.M. Ahmed, Z. Haddad, and C. Abid, Poiseuille-Rayleigh-Bénard mixed convection flow in a channel: Heat transfer and fluid flow patterns. International Journal of Heat and Mass Transfer, 180 (2021) 121745.

DOI: 10.1016/j.ijheatmasstransfer.2021.121745

Google Scholar

[5] R. Taher and C. Abid, (2017). Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow. Heat and Mass Transfer, 54-5 (2017) 1453-1466.

DOI: 10.1007/s00231-017-2220-3

Google Scholar

[6] S. Amiri, R. Taher, and L.G. Mongeau, Experimental study of the oscillatory velocity and temperature near a heated circular cylinder in an acoustic standing wave. International Journal of Heat and Mass Transfer, 69 (2014) 464–472.

DOI: 10.1016/j.ijheatmasstransfer.2013.10.039

Google Scholar

[7] C. Habchi, A. Ghanem, T. Lemenand, D. Della Valle, H. Peerhossaini, Mixing performance in Split-And-Recombine Milli-Static Mixers—A numerical analysis, Chemical Engineering Research and Design, 142 (2019) 298–306.

DOI: 10.1016/j.cherd.2018.12.010

Google Scholar

[8] T. Hassana, C. Habchi, T. Lemenand, F. Azizi, CFD simulation of creeping flows in a novel split-and-recombine multifunctional reactor, Chemical Engineering and Processing - Process Intensification, 162 (2021) 108353.

DOI: 10.1016/j.cep.2021.108353

Google Scholar

[9] K. Faraj, J. Faraj, F. Hachem, H. Bazzi, M. Khaled, and Cathy Castelain, Analysis of underfloor electrical heating system integrated with coconut oil-PCM plates, Applied Thermal Engineering, 158 (2019) 113778.

DOI: 10.1016/j.applthermaleng.2019.113778

Google Scholar

[10] H. Jaber, M. Ramadan, T. Lemenand, and M. Khaled, Domestic Thermoelectric Cogeneration System: Optimization Analysis, Energy Consumption and CO2 Emissions Reduction, Applied Thermal Engineering, 130 (2018) 279-295.

DOI: 10.1016/j.applthermaleng.2017.10.148

Google Scholar

[11] J. Zheng, W. Zheng, A. Chen, J. Yao, Y. Ren, C. Zhou, J. Wu, W. Ling, B. Bai, W. Wang, and Z. Zhang, Sustainability of unconventional machining industry considering impact factors and reduction methods of energy consumption: A review and analysis, Science of the Total Environment, 722 (2020) 137897.

DOI: 10.1016/j.scitotenv.2020.137897

Google Scholar

[12] F. Razi and I. Dincer, Renewable energy development and hydrogen economy in MENA region: A review, Renewable and Sustainable Energy Reviews, 168 (2022) 112763.

DOI: 10.1016/j.rser.2022.112763

Google Scholar

[13] G.S. Thirunavukkarasu, M. Seyedmahmoudian, E. Jamei, B. Horan, S. Mekhilef, and A. Stojcevski, Role of optimization techniques in microgrid energy management systems—A review, Energy Strategy Reviews, 43 (2022) 100899.

DOI: 10.1016/j.esr.2022.100899

Google Scholar

[14] M. Khaled, M. Ramadan, and H. El Hage, Parametric analysis of heat recovery from exhaust gases of generators, Energy Procedia, 75 (2015) 3295-3300.

DOI: 10.1016/j.egypro.2015.07.710

Google Scholar

[15] W.J. Du, Q. Yin, and L. Cheng, Experiments on novel heat recovery systems on rotary kilns, Applied Thermal Engineering, 139 (2018) 535-541.

DOI: 10.1016/j.applthermaleng.2018.04.125

Google Scholar

[16] A. Mahmoudi, M. Fazli, and M. R. Morad, A recent review of waste heat recovery by Organic Rankine Cycle, Applied Thermal Engineering, 143 (2018) 660-675.

DOI: 10.1016/j.applthermaleng.2018.07.136

Google Scholar

[17] A. Akbari, S. Kouravand, and G. Chegini, Experimental analysis of a rotary heat exchanger for waste heat recovery from the exhaust gas of dryer, Applied Thermal Engineering, 138 (2018) 668-674.

DOI: 10.1016/j.applthermaleng.2018.04.103

Google Scholar

[18] G.Shu, J. Zhao, H. Tian, X. Liang, H. Wei. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy (2012); 45:806–16.

DOI: 10.1016/j.energy.2012.07.010

Google Scholar

[19] Orr B, Singh B, Tan L, Akbarzadeh A. Electricity generation from an exhaust heat recovery system utilising thermoelectric cells and heat pipes. Applied Thermal Engineering (2014); 73: 586–95

DOI: 10.1016/j.applthermaleng.2014.07.056

Google Scholar

[20] Niu Z, Diao H, Yu S, Jiao K, Du Q, Shu G. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine. Energy Conversion Management (2014); 85:85–101.

DOI: 10.1016/j.enconman.2014.05.061

Google Scholar

[21] He W, Wang S, Zhang X, Li Y, Lu C. Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat. Energy (2015); 91:1–9.

DOI: 10.1016/j.energy.2015.08.022

Google Scholar

[22] D. Champier, J. Bédécarrats, T. Kousksou, M. Rivaletto, F. Strub, P. Pignolet. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy (2011); 36: 1518–26.

DOI: 10.1016/j.energy.2011.01.012

Google Scholar

[23] Montecucco A, Siviter J, Knox AR. Combined heat and power system for stoves with thermoelectric generators. Applied Energy (2017); 185:1336–42.

DOI: 10.1016/j.apenergy.2015.10.132

Google Scholar

[24] Gao HB, Huang GH, Li HJ, Qu ZG, Zhang YJ. Development of stove-powered thermoelectric generators: A review. Applied Thermal Engineering (2016); 96:297–310.

DOI: 10.1016/j.applthermaleng.2015.11.032

Google Scholar

[25] Durand T, Dimopoulos P, Tang Y, Liao Y, Landmann D. Potential of energy recuperation in the exhaust gas of state of the art light duty vehicles with thermoelectric elements. Fuel (2018); 224:271–9.

DOI: 10.1016/j.fuel.2018.03.078

Google Scholar

[26] Chinguwa S, Musora C, Mushiri T. The design of portable refrigerator powered by exhaust heat using thermoelectric. Procedia Manuf (2018); 21:741–8.

DOI: 10.1016/j.promfg.2018.02.179

Google Scholar

[27] He W, Wang S, Yue L. High net power output analysis with changes in exhaust temperature in a thermoelectric generator system. Applied Energy (2017).

DOI: 10.1016/j.apenergy.2016.12.078

Google Scholar

[28] Li B, Huang K, Yan Y, Li Y, Twaha S, Zhu J. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles. Applied Energy (2017); 205:868–79.

DOI: 10.1016/j.apenergy.2017.08.092

Google Scholar

[29] H. Ma, C. Lin, H. Wu, C. Peng, C. Hsu. Waste heat recovery using a thermoelectric power generation system in a biomass gasifier. Applied Thermal Engineering. (2015); 88:274–9.

DOI: 10.1016/j.applthermaleng.2014.09.070

Google Scholar

[30] Jaber H, Khaled M, Lemenand T, Faraj J, Bazzi H, Ramadan M. Effect of Exhaust Gases Temperature on the Performance of a Hybrid Heat Recovery System. Energy Procedia (2017); 119: 775–82.

DOI: 10.1016/j.egypro.2017.07.110

Google Scholar

[31] Vale S, Heber L, Coelho PJ, Silva CM. Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation. Energy Conversion Management (2017); 133:167–77.

DOI: 10.1016/j.enconman.2016.11.064

Google Scholar

[32] Kim TY, Negash AA, Cho G. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Conversion Management (2016); 124:280–6.

DOI: 10.1016/j.enconman.2016.07.013

Google Scholar

[33] In B, Kim H, Son J, Lee K. The study of a thermoelectric generator with various thermal conditions of exhaust gas from a diesel engine. International Journal of Heat Mass Transfer (2015); 86:667–80.

DOI: 10.1016/j.ijheatmasstransfer.2015.03.052

Google Scholar

[34] Shu G, Zhao J, Tian H, Liang X, Wei H. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy (2012); 45:806–16.

DOI: 10.1016/j.energy.2012.07.010

Google Scholar

[35] X. Gao, S. Andreasen, M. Chen, S. Kaer. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery. International Journal of Hydrogen Energy (2012); 37:8490–8.

DOI: 10.1016/j.ijhydene.2012.03.009

Google Scholar

[36] F. Tohidi, S.G. Holagh, and A. Chitsaz, Thermoelectric Generators: A comprehensive review of characteristics and applications, Applied Thermal Engineering, 201 (2022) 117793.

DOI: 10.1016/j.applthermaleng.2021.117793

Google Scholar

[37] S. Shoeibi, H. Kargarsharifabad, M. Sadi, A. Arabkoohsar, and S. A. A. Mirjalily, A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications, Sustainable Energy Technologies and Assessments, 52 (2022) 102105.

DOI: 10.1016/j.seta.2022.102105

Google Scholar

[38] Z. Wehbi, R. Taher, J. Faraj, C. Castelain, and M. Khaled, Hybrid thermoelectric generators-renewable energy systems: A short review on recent developments,Energy Reports, 8 (2022) 1361-1370.

DOI: 10.1016/j.egyr.2022.08.068

Google Scholar

[39] R. Aridi, J. Faraj, S. Ali, T. Lemenand, and M. khaled, A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems, Renewable and Sustainable Energy Reviews, 167 (2022) 112669.

DOI: 10.1016/j.rser.2022.112669

Google Scholar

[40] F. Zhang, X. Wang, X. Hou, C. Han, M. Wu, and Z. Liu, Variance-based global sensitivity analysis of a hybrid thermoelectric generator fuzzy system, Applied Energy, 307 (2022) 118208.

DOI: 10.1016/j.apenergy.2021.118208

Google Scholar

[41] M. Gharzi, A. M. Kermani, and H. T. Shamsabadi, Experimental investigation of a parabolic trough collector-thermoelectric generator (PTC-TEG) hybrid solar system with a pressurized heat transfer fluid, Renewable Energy, 202 (2023) 270-279.

DOI: 10.1016/j.renene.2022.11.110

Google Scholar

[42] M. Ramadan, S. Ali, H. Bazzi, and M. Khaled, New hybrid system combining TEG, condenser hot air and exhaust airflow of all-air HVAC systems, Case Studies in Thermal Engineering, 10 (2017) 154-160.

DOI: 10.1016/j.csite.2017.05.007

Google Scholar

[43] A. Faraj, H. Jaber, K. Chahine, J. Faraj, M. Ramadan, H. El Hage, and M. Khaled, New Concept of Power Generation Using TEGs: Thermal Modeling, Parametric Analysis, and Case Study, Entropy, 22 (2020) 1-16.

DOI: 10.3390/e22050503

Google Scholar

[44] Incorpera, F.P. and DeWitt, D.P. 2007. Fundamentals of heat and mass transfer. Sixth Edition. John Wiley & Sons.

Google Scholar

[45] https://customthermoelectric.com/media/wysiwyg/TEG_spec_sheets/1261G-7L31-04CQ_20140514_spec_sht.pdf.

Google Scholar

[46] https://thermoelectric-generator.com/wp-content/uploads/2014/04/SpecTEG1-12611-6.0Thermoelectric-generator1.pdf.

Google Scholar