Effect of In-Plane Stress on the Frictional Behavior of Thin Layers

Article Preview

Abstract:

Usually, contact mechanics focus on semi-infinite solids, so that any interaction between normal and in-plane deformation is commonly disregarded. However, when dealing with layers of finite thickness, this assumption is no longer valid, and the specific geometry of the contact pair plays a key role in determining the normal-tangential coupling. In this study, we focus on the exemplar case of a thin deformable layer in frictional sliding contact with a rough profile, where the interplay between tangential friction and normal pressure may lead to significantly different contact behavior compared to the uncoupled case, both in terms of contact area size and frictional response.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-23

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dahotre, N.B., Nayak, S. Nanocoatings for engine application. Surf. Coat. Technol. 194 (1), 58–67 (2005).

Google Scholar

[2] Kano, M. Super low friction of DLC applied to engine cam follower lubricated with ester-containing oil. Tribol. Int. 39 (12), 1682–1685 (2006).

DOI: 10.1016/j.triboint.2006.02.068

Google Scholar

[3] Carbone, G., Mangialardi, L., Analysis of the adhesive contact of confined layers by using a Green's function approach. J. Mech. Phys. Solids 56 (2), 684–706 (2008).

DOI: 10.1016/j.jmps.2007.05.009

Google Scholar

[4] Menga, N., Afferrante, L., Carbone, G. Adhesive and adhesiveless contact mechanics of elastic layers on slightly wavy rigid substrates. Int. J. Solids Struct. 88, 101–109 (2016).

DOI: 10.1016/j.ijsolstr.2016.03.016

Google Scholar

[5] Menga, N., Afferrante, L., Carbone, G. Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles. J. Mech. Phys. Solids 95, 517–529 (2016).

DOI: 10.1016/j.jmps.2016.06.009

Google Scholar

[6] Menga, N., Afferrante, L., Demelio, G.P., Carbone, G. Rough contact of sliding viscoelastic layers: Numerical calculations and theoretical predictions. Tribol. Int. 122, 67–75 (2018).

DOI: 10.1016/j.triboint.2018.02.012

Google Scholar

[7] Menga, N., Dini, D., Carbone, G. Tuning the periodic V-peeling behavior of elastic tapes applied to thin compliant substrates. Int. J. Mech. Sci. 170, 105331 (2020).

DOI: 10.1016/j.ijmecsci.2019.105331

Google Scholar

[8] Menga, N., Bottiglione, F., & Carbone, G. Nonlinear viscoelastic isolation for seismic vibration mitigation. Mech. Syst. Signal. Process., 157, 107626 (2021).

DOI: 10.1016/j.ymssp.2021.107626

Google Scholar

[9] Nowell, D., Hills, D.A., Sackfield, A. Contact of dissimilar elastic cylinders under normal and tangential loading. J. Mech. Phys. Solids 36 (1), 59–75 (1988).

DOI: 10.1016/0022-5096(88)90020-8

Google Scholar

[10] Chen, W.W., Wang, Q.J. A numerical model for the point contact of dissimilar materials considering tangential tractions. Mech. Mater. 40 (11), 936–948 (2008).

DOI: 10.1016/j.mechmat.2008.06.002

Google Scholar

[11] Nowell, D., Hills, D.A. Tractive rolling of tyred cylinders. Int. J. Mech. Sci. 30 (12), 945–957 (1988).

DOI: 10.1016/0020-7403(88)90076-8

Google Scholar

[12] Jaffar, M.J. A numerical investigation of the sinusoidal model for elastic layers in line contact. Int. J. Mech. Sci. 39 (5), 497–506 (1997).

DOI: 10.1016/s0020-7403(96)00076-8

Google Scholar

[13] Menga, N. Rough frictional contact of elastic thin layers: The effect of geometric coupling. Int. J. Solids Struct. 164, 212–220 (2019).

DOI: 10.1016/j.ijsolstr.2019.01.005

Google Scholar

[14] Menga, N., Carbone, G., Dini, D. Exploring the effect of geometric coupling on friction and energy dissipation in rough contacts of elastic and viscoelastic coatings. Journal of the Mechanics and Physics of Solids, 148, 104273 (2021).

DOI: 10.1016/j.jmps.2020.104273

Google Scholar

[15] Müser, M. H., et Al. (2017). Meeting the contact-mechanics challenge. Tribology Letters, 65(4), 1-18.

Google Scholar

[16] Carbone, G., & Bottiglione, F. (2008). Asperity contact theories: Do they predict linearity between contact area and load?. Journal of the Mechanics and Physics of Solids, 56(8), 2555-2572.

DOI: 10.1016/j.jmps.2008.03.011

Google Scholar

[17] Greenwood, J. A., & Williamson, J. P. (1966). Contact of nominally flat surfaces. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 295(1442), 300-319.

DOI: 10.1098/rspa.1966.0242

Google Scholar

[18] Bush, A.W. , Gibson, R.D. , Thomas, T.R. , 1975. The elastic contact of a rough surface. Wear 35, 87–111

DOI: 10.1016/0043-1648(75)90145-3

Google Scholar

[19] Campaná, C., & Müser, M. H. (2007). Contact mechanics of real vs. randomly rough surfaces: A Green's function molecular dynamics study. EPL (Europhysics Letters), 77(3), 38005.

DOI: 10.1209/0295-5075/77/38005

Google Scholar

[20] Campañá, C., Müser, M. H., & Robbins, M. O. (2008). Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. Journal of Physics: Condensed Matter, 20(35), 354013.

DOI: 10.1088/0953-8984/20/35/354013

Google Scholar

[21] Persson, B. N. (2006). Contact mechanics for randomly rough surfaces. Surface science reports, 61(4), 201-227.

DOI: 10.1016/j.surfrep.2006.04.001

Google Scholar

[22] Carbone, G., Mandriota, C., & Menga, N. (2022). Theory of viscoelastic adhesion and friction. Extreme Mechanics Letters, 56, 101877.

DOI: 10.1016/j.eml.2022.101877

Google Scholar

[23] Persson, B. N. (2001). Theory of rubber friction and contact mechanics. The Journal of Chemical Physics, 115(8), 3840-3861.

DOI: 10.1063/1.1388626

Google Scholar

[24] Persson, B. N., Albohr, O., Tartaglino, U., Volokitin, A. I., & Tosatti, E. (2004). On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. Journal of physics: Condensed matter, 17(1), R1.

DOI: 10.1088/0953-8984/17/1/r01

Google Scholar