Halloysite Nanotube (HNT) Dispersion Stability in 10% Ethanol-Water Mixture and Water

Article Preview

Abstract:

This study investigates Halloysite Nanotube (HNT) dispersibility in ethanol-water mixtures – 0% and 10% ethanol at 100, 300, and 500 ppm HNT concentrations. Overall, the study finds that changes in HNT concentration linearly affect the response variables and showed that the 10% ethanol solvent has a higher zeta potential, smaller particle size, higher viscosity, and settling velocity. The enlargement of HNT particles at 10% ethanol while keeping better stability than water solvent is unexpected and can open novel studies about the dispersion of HNT in this solvent system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-126

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Krishnam, M., Bose, S., & Das, C. (2016). Boron nitride (BN) nanofluids as a cooling agent in the thermal management system (TMS). Applied Thermal Engineering. 951-958 (106). Retrieved from.

DOI: 10.1016/j.applthermaleng.2016.06.099

Google Scholar

[2] Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and Applications of Halloysite Nanotubes: Recent Research Advances and Future Prospects. Applied Clay Science. 112-113, 75-93. Retrieved from:.

DOI: 10.1016/j.clay.2015.05.001

Google Scholar

[3] Lisuzzo, L., Cavallaro, G. Parisi, F. (2018). Colloidal Stability of Halloysite Clay Nanotubes. Ceramics International. Retrieved from https:// doi.org/.

DOI: 10.1016/j.ceramint.2018.07.289

Google Scholar

[4] Badea, E., Carsote, C., Hadimbu, E. (2019). The Effect of Halloysite Nanotubes Dispersions on Vegetable-Tanned Leather Thermal Stability. Heritage Science, 7, 68. Retrieved from:.

DOI: 10.1186/s40494-019-0310-x

Google Scholar

[5] White, D. R., Bavykin, V. D., & Walsh, C. F. (2012). The Stability of Halloysite Nanotubes in Acidic and Alkaline Aqueous Suspensions. Nanotechnology, 23. Retrieved from:.

DOI: 10.1088/0957-4484/23/6/065705

Google Scholar

[6] Zhou, Z., Fang, L., Cao, Y. (2020). Determination of Hansen Solubility Parameters of Halloysite Nanotubes and Prediction of its Compatibility with Polyethylene Oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Retrieved from:

DOI: 10.1016/j.colsurfa.2020.125031

Google Scholar

[7] Badea, E., Carşote, C., Hadîmbu, E. (2020). The effect of halloysite nanotube dispersions on vegetable-tanned leather thermal stability. Heritage Science, 68 (7), 68. Retrieved from.

DOI: 10.1186/s40494-019-0310-x

Google Scholar

[8] Sadeh, P., Najafipour, I., Gholami, M. (2019). Adsorption Kinetics of Halloysite Nanotube and Modified Halloysite at the Palm Oil-Water Interface and Pickering Emulsion Stabilized by Halloysite Nanotube and Modified Halloysite Nanotube. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 231-239. Retrieved from:.

DOI: 10.1016/j.colsurfa.2019.05.034

Google Scholar

[9] Saif. M. J., Asif H. M., & Naveed M. (2018). Properties and Modification Methods of Halloysite Nanotubes: A State-of-the-Art Review. Journal of the Chilean Chemical Society, 63. 4109-4125.

DOI: 10.4067/s0717-97072018000304109

Google Scholar

[10] Okonkwo, E., Wole-Osho, I., Almanassra, I., Abdullatif, Y., & Al-Ansari, T. (2020). An updated review of nanofluids in various heat transfer devices. Journal of Thermal Analysis and Calorimetry. Retrieved from.

DOI: 10.1007/s10973-020-09760-2

Google Scholar

[11] Hamed, M.A & Yariv E., (2009). Induced-charged electrokinetic flows about polarizable nanoparticles: the thick-Debye-layer limit. Journal of Fluid Mechanics. Retrieved from.

DOI: 10.1017/S0022112009005965

Google Scholar

[12] Larsson M., Hill A., & Duffy J. (2012). Suspension Stability; Why Particle Size, Zeta Potential, and Rheology are Important. Annual Transactions of the Nordic Rheology Society, 20.

Google Scholar

[13] Alktranee, M & Bencs, P. (2023). Factors affecting nanofluid behavior: A review. Internal Review of Applied Sciences and Engineering, 241-255 (14). Retrieved from.

DOI: 10.1556/1848.2022.00531

Google Scholar

[14] Tagalog, C.J.L., Caparanga, A.R. & Millare, J.C. (2019). Dispersion and diffusivity of halloysite and bentonite nanoclays in aqueous Pb (II): Effect of particle concentration, temperature, and Ph. IOP Conference Series: Earth and Environmental Science. Retrieved from.

DOI: 10.1088/1755-1315/344/1/012040

Google Scholar

[15] Alktranee, M & Bencs, P. (2023). Factors affecting nanofluid behavior: A review. Internal Review of Applied Sciences and Engineering, 241-255 (14). Retrieved from.

DOI: 10.1556/1848.2022.00531

Google Scholar

[16] Ghadimi, A., Saidur, R., & Metselaar, H.S.C. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 4051-4068 (54). Retrieved from.

DOI: 10.1016/j.ijheatmasstransfer.2011.04.014

Google Scholar

[17] Millare J. C. & Basilia B. A. (2019). Dispersion and electrokinetics of scattered objects. Fluid Phase Equilibria. 44-54 (481). Retrieved from.

DOI: 10.1016/j.fluid.2018.10.013

Google Scholar

[18] Nagasawa, Y., Kato, Z., & Tanaka, S. (2016). Particle Sedimentation in Monitoring in High-Concentration Slurries. American Institute of Physics. Retrieved from.

DOI: 10.1063/1.4967350

Google Scholar

[19] Kuhn, N. (2015). Modeling Sedimentation. Experiments in Reduced Gravity, 39-51 (4). Retrieved from.

DOI: 10.1016/B978-0-12-799965-4.00004-2

Google Scholar

[20] Millare J. C. & Basilia B. A. (2018). Nanobubbles from Ethanol-Water Mixtures: Generation and Solute Effects via Solvent Replacement Method. Chemistry Select. 9268-9275 (3). Retrieved from.

DOI: 10.1002/slct.201801504

Google Scholar