Computational Modeling of Ammonia Dispersion in the Atmosphere in Cases of Accidental Leakage during Road Transport

Article Preview

Abstract:

This study aimed to analyze the atmospheric dispersion of dense gases, such as ammonia (NH3), resulting from hypothetical leaks in a truck's cistern during road transport. By employing mathematical models, it was possible to estimate the distance that the gas cloud, formed after an accidental leak, would travel in the atmosphere until it was sufficiently diluted to no longer pose a toxicity risk. The analysis was conducted using the ALOHA software in conjunction with Google Earth to visualize the different scenarios. The results showed that during the nighttime period, scenario 6 exhibited the longest plume reach, with a distance of 484 meters in the red zone. During the daytime period, scenario 4 had the longest reach, with a plume extending 139 meters in the red zone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-50

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ANTT, Manual de Fiscalização do Transporte Rodoviário Nacional e Internacional de Produtos Perigosos, Agência Nacional de Transportes Terrestres, Brasília, 2020. Available at: http://tri-leg.antt.gov.br/OutrosDocumentos/SGT5_2020_ACTA02_ANE08_ES_ManualFiscaliza%C3%A7%C3%A3oTRPP%204%C2%AA%20Edi%C3%A7%C3%A3o.pdf.

DOI: 10.21207/2675-0104.2018.800

Google Scholar

[2] ABIQUIM, Manual para atendimento de emergências com produtos perigosos, Associação Brasileira da Indústria Química, São Paulo, 1999. 340 p.

Google Scholar

[3] M. A. Pomares et al., GUÍA OPERATIVA: Actuaciones con amoniaco para bomberos, Sts Protección, Espanha, vol. 1, 2019. 146 p. Available at: https://www.sts-proteccion.com/documentos/GUIA-AMONIACO-BOMBEROS.pdf. Accessed on: 29 May 2022.

Google Scholar

[4] O. L. G. Maioli, G. N. D. Nascimento, Composição da Atmosfera, Ciclos Globais e Tempo de Vida, Universidade Federal do Espírito Santo, Departamento de Engenharia Ambiental, Vitória, 2005. Available at: http://www.inf.ufes.brTrabalho_Gil_e_Otavio. Accessed on: 10 November 2022.

DOI: 10.24873/j.rpemd.2023.03.1051

Google Scholar

[5] R. Jones et al., Areal Locations of Hazardous Atmospheres. 5.4.4: Technical Documentation, U.S. Dept. of Commerce, NOAA Technical Memorandum NOS OR&R 43, Seattle: Emergency Response Division (NOAA), 2013. 96 p. Available at: https://response.restoration.noaa.gov/sites/default/files/ALOHA_Tech_Doc.pdf. Accessed on: 20 November 2022.

Google Scholar

[6] T. Spicer, J. Havens, Application of dispersion models to flammable cloud analysis, Journal of Hazardous Materials, vol. 49, November 1996, p.115–124.

DOI: 10.1016/0304-3894(96)01765-7

Google Scholar

[7] NOAA, Monthly Global Climate Report for December 2021, National Centers for Environmental Information, January 2022. Available at: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202200. Accessed on: 19 June 2024.

Google Scholar

[8] E. Palazzi et al., Diffusion from a steady source of short duration, Atmospheric Environment, vol. 16, 1982, p.2785–2790. Available at: https://www.sciencedirect.com/science/article/abs/pii/0004698182900294.

DOI: 10.1016/0004-6981(82)90029-4

Google Scholar

[9] F. Pasquill, The estimation of the dispersion of windborne material, The Meteorological Magazine, vol. 90, no. 1,063, February 1961. Available at: https://archive.org/details/sim_meteorological-magazine_1961_90_index. Accessed on: 19 June 2024.

Google Scholar

[10] EPA, Access Acute Exposure Guideline Levels (AEGLs) Values - Acute Exposure Guideline Levels, United States Environmental Protection Agency, USA, 1999. Available at: https://www.epa.gov/aegl/access-acute-exposure-guideline-levels-aegls-values. Accessed on: 19 June 2024.

DOI: 10.3320/1.2758155

Google Scholar

[11] S. Fontanive, Estudo de análise de risco do cloro em estações de tratamento de água, M.Sc. dissertation, Universidade Federal do Paraná, Curitiba, 2005. 182 p. Available at: https://acervodigital.ufpr.br/handle/1884/10309. Accessed on: 10 March 2021.

DOI: 10.32811/25954482-2020v3n1p51

Google Scholar

[12] Final Risk Assessment Report for the FutureGen Project Environmental Impact Statement, Contract No. DE-AT26-06NT42921, April 2007. Available at: https://www.energy.gov/sites/prod/files/EIS-0394-DEIS-RiskAssessmentReport-2007.pdf.

Google Scholar