[1]
A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nature Communications 2020 11:1 11 (2020) 1–9.
DOI: 10.1038/s41467-020-15355-0
Google Scholar
[2]
K.J. Park, H.G. Jung, L.Y. Kuo, P. Kaghazchi, C.S. Yoon, Y.K. Sun, Improved Cycling Stability of Li[Ni0.90Co0.05Mn0.05]O2 Through Microstructure Modification by Boron Doping for Li-Ion Batteries, Adv Energy Mater 8 (2018) 1801202.
DOI: 10.1002/aenm.201801202
Google Scholar
[3]
J. Li, N. Zhang, H. Li, A. Liu, Y. Wang, S. Yin, H. Wu, J.R. Dahn, Impact of the Synthesis Conditions on the Performance of LiNixCoyAlzO2 with High Ni and Low Co Content, J Electrochem Soc 165 (2018) A3544–A3557.
DOI: 10.1149/2.0931814jes
Google Scholar
[4]
P.N. Suryadi, J. Karunawan, O. Floweri, F. Iskandar, Toward high-rate capability of intercalation cathodes Li-ion batteries, potency for fast-charging application: A materials perspective, J Energy Storage 68 (2023) 107634.
DOI: 10.1016/j.est.2023.107634
Google Scholar
[5]
Y. Hong Luo, H. Xin Wei, L. Bo Tang, Y. de Huang, Z. Yu Wang, Z. Jiang He, C. Yan, J. Mao, K. Dai, J. Chao Zheng, Nickel-rich and cobalt-free layered oxide cathode materials for lithium-ion batteries, Energy Storage Mater 50 (2022) 274–307.
DOI: 10.1016/j.ensm.2022.05.019
Google Scholar
[6]
D. Castelvecchi, Electric cars and batteries: how will the world produce enough?, Nature 596 (2021) 336–339.
DOI: 10.1038/d41586-021-02222-1
Google Scholar
[7]
M. Roshanfar, R. Golmohammadzadeh, F. Rashchi, An environmentally friendly method for recovery of lithium and cobalt from spent lithium-ion batteries using gluconic and lactic acids, J Environ Chem Eng 7 (2019) 102794.
DOI: 10.1016/j.jece.2018.11.039
Google Scholar
[8]
S. Refly, O. Floweri, T.R. Mayangsari, A. Sumboja, S.P. Santosa, T. Ogi, F. Iskandar, Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid co-precipitation processes, ACS Sustain Chem Eng 8 (2020).
DOI: 10.1021/acssuschemeng.0c01006.s001
Google Scholar
[9]
A.L. Sidiq, O. Floweri, J. Karunawan, O.B. Abdillah, S.P. Santosa, F. Iskandar, NCM cathode active materials reproduced from end-of-life Li-ion batteries using a simple and green hydrometallurgical recycling process, Mater Res Bull 153 (2022).
DOI: 10.1016/j.materresbull.2022.111901
Google Scholar
[10]
S. Refly, O. Floweri, T.R. Mayangsari, A.H. Aimon, F. Iskandar, Green recycle processing of cathode active material from LiNi1/3Co1/3Mn1/3O2 (NCM 111) battery waste through citric acid leaching and oxalate co-precipitation process, Mater Today Proc 44 (2020).
DOI: 10.1016/j.matpr.2020.11.664
Google Scholar
[11]
D. Wang, I. Belharouak, G. Zhou, K. Amine, Synthesis of Lithium and Manganese-Rich Cathode Materials via an Oxalate Co-Precipitation Method, J Electrochem Soc 160 (2013) A3108–A3112.
DOI: 10.1149/2.016305jes
Google Scholar
[12]
A.L. Sidiq, O. Floweri, A.H. Aimon, F. Iskandar, Transition metals recovery from organic acid leachate of spent lithium-ion battery cathode via oxalic acid co-precipitation, AIP Conf Proc 2652 (2022).
DOI: 10.1063/5.0106405
Google Scholar
[13]
Y. Lei, J. Ai, S. Yang, H. Jiang, C. Lai, Q. Xu, Effect of flower-like Ni(OH)2 precursors on Li+/Ni2+ cation mixing and electrochemical performance of nickel-rich layered cathode, J Alloys Compd 797 (2019) 421–431.
DOI: 10.1016/j.jallcom.2019.05.065
Google Scholar
[14]
L.P. He, S.Y. Sun, J.G. Yu, Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ion batteries by a carbonate co-precipitation method, Ceram Int 44 (2018) 351–357.
DOI: 10.1016/j.ceramint.2017.09.180
Google Scholar
[15]
P. Xiao, W. Li, S. Chen, G. Li, Z. Dai, M. Feng, X. Chen, W. Yang, Effects of Oxygen Pressurization on Li+/Ni2+ Cation Mixing and the Oxygen Vacancies of LiNi0.8Co0.15Al0.05O2 Cathode Materials, ACS Appl Mater Interfaces 14 (2022) 31851–31861.
DOI: 10.1021/acsami.2c05136
Google Scholar
[16]
N. V. Kosova, E.T. Devyatkina, V. V. Kaichev, Optimization of Ni2+/Ni3+ ratio in layered Li(Ni,Mn,Co)O2 cathodes for better electrochemistry, J Power Sources 174 (2007) 965–969.
DOI: 10.1016/j.jpowsour.2007.06.051
Google Scholar
[17]
E.D. Orlova, A.A. Savina, S.A. Abakumov, A. V. Morozov, A.M. Abakumov, Comprehensive study of Li+/Ni2+ disorder in ni-rich NMCs cathodes for Li-ion batteries, Symmetry (Basel) 13 (2021) 1628.
DOI: 10.3390/sym13091628
Google Scholar
[18]
Z. Huang, M. Chu, R. Wang, W. Zhu, W. Zhao, C. Wang, Y. Zhang, L. He, J. Chen, S. Deng, L. Mei, W.H. Kan, M. Avdeev, F. Pan, Y. Xiao, Optimizing the structure of layered cathode material for higher electrochemical performance by elucidating structural evolution during heat processing, Nano Energy 78 (2020) 105194.
DOI: 10.1016/j.nanoen.2020.105194
Google Scholar