Application of Hybrid ANFIS Tool for Laser Beam Welding of Inconel 625 Alloy

Article Preview

Abstract:

Over the past decade, there has been a steady rise in the application of laser sources; this has led to reduced costs and enhanced output. One aspect that has played a part and helped to the quickening of this phenomena is the invention of new techniques such as laser beam welding systems. These developments in technology have made it feasible to produce both tiny and large parts. The usage of nickel alloy can provide considerable benefits in a wide variety of contexts. The advantages acquired from combining difficult materials, such as metal alloys, are responsible for these benefits. Manufacturing equipment for the chemical, nuclear, maritime, aeronautical, and automotive industries all rely on components made from Inconel 625. It can withstand potentially corrosive situations without losing its outstanding mechanical qualities. Investigation of nickel alloy weldments is required for the improvement of the production method. The goal of this piece is to develop an ANFIS (Adaptive Neuro Fuzzy Inference System) based on Grey theory that can reliably forecast LBW variables. The values predicted by the model were compared with the results of the experiments, and it was discovered that the values found in the experiments are closely related to the values anticipated by the model. The manufacturer can make decisions that are more in accordance with the available facts due to the evidence provided by the performance investigation.

You might also be interested in these eBooks

Info:

Pages:

27-40

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Donachie, Superalloys: A Technical Guide, second ed., 2002, p.1–409. America (NY).

Google Scholar

[2] J.C. Lippold, J. Weld, Fla Miami, Investigation of Weld Cracking in Alloy 800, 1984, p.63.

Google Scholar

[3] Thejasree, P., Manikandan, N., Binoj, J. S., Varaprasad, K. C., Palanisamy, D., & Raju, R. (2021). Numerical simulation and experimental investigation on laser beam welding of Inconel 625. Materials today: proceedings, 39, 268-273.

DOI: 10.1016/j.matpr.2020.07.042

Google Scholar

[4] N. Nissley, T.D. Anderson, F.F. Noecker, C. Roepke, M. Gallagher, M. Hukle, Dissimilar metal welding of Nitronic 50 HS® and 25% Cr super duplex stainless steel, in: Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE, American Society of Mechanical Engineers (ASME), 2014, https://doi.org/10.1115/OMAE2014- 24706.

DOI: 10.1115/omae2014-24706

Google Scholar

[5] F. Zapirain, F. Zubiri, F. Garciandía, I. Tolosa, S. Chueca, A. Goiria, Development of laser welding of Ni based superalloys for aeronautic engines applications (experimental process and obtained properties), Phys. Proc. 12 (2011) 105– 112.

DOI: 10.1016/j.phpro.2011.03.014

Google Scholar

[6] B.S. Yilbas, S. Akthar, Laser welding of Haynes 188 alloy sheet: thermal stress analysis, Int. J. Adv. Manuf. Technol. 56 (2011) 115–124.

DOI: 10.1007/s00170-011-3181-1

Google Scholar

[7] Natarajan, M., Pasupuleti, T., Giri, J., Sunheriya, N., Katta, L. N., Chadge, R., ... & Ray, K. (2023). Machinability of Titanium Grade 5 Alloy for Wire Electrical Discharge Machining Using a Hybrid Learning Algorithm. Information, 14(8), 439.

DOI: 10.3390/info14080439

Google Scholar

[8] M. Shakil, M. Ahmad, N.H. Tariq, B.A. Hasan, J.I. Akhter, E. Ahmed, M. Mehmood, M.A. Choudhry, M. Iqbal, Microstructure and hardness studies of electron beam welded Inconel 625 and stainless steel 304L, Vacuum 110 (2014) 121–126.

DOI: 10.1016/j.vacuum.2014.08.016

Google Scholar

[9] Khan, M. A., Thejasree, P., Natarajan, M., & Narasimhamu, K. L. (2023). Application of a hybrid Taguchi grey approach for determining the optimal parameters on wire electrical discharge machining of Ti6Al4V. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-18.

DOI: 10.1007/s12008-023-01440-3

Google Scholar

[10] K.H. Song, K. Nakata, Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding, Mater. Des. 31 (2010) 2942–2947.

DOI: 10.1016/j.matdes.2009.12.020

Google Scholar

[11] M.M.Z. Ahmed, B.P. Wynne, J.P. Martin, Effect of friction stir welding speed on mechanical properties and microstructure of nickel based super alloy Inconel 718, Sci. Technol. Weld. Joi. 18 (8) (2013) 680–687.

DOI: 10.1179/1362171813y.0000000156

Google Scholar

[12] D.J. Tillack, Welding superalloys for aerospace applications, Weld. J. 1 (2007) 28–32

Google Scholar

[13] Natarajan, M., Pasupuleti, T., Abdullah, M. M., Mohammad, F., Giri, J., Chadge, R., ... & Soleiman, A. A. (2023). Assessment of Machining of Hastelloy Using WEDM by a Multi-Objective Approach. Sustainability, 15(13), 10105.

DOI: 10.3390/su151310105

Google Scholar

[14] Thejasree, P., Narasimhamu, K. L., Natarajan, M., & Raju, R. (2022). Generative modelling of laser beam welded Inconel 718 thin weldments using ANFIS based hybrid algorithm. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-9.

DOI: 10.1007/s12008-022-00959-1

Google Scholar

[15] Thejasree, P., & Natarajan, M. (2023). Applications of hybrid artificial intelligence tool in wire electro discharge machining of 7075 aluminium alloy. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-12.

DOI: 10.1007/s12008-023-01315-7

Google Scholar

[16] F. Caiazzo, V. Alfieri, F. Cardaropoli, V. Sergi, Investigation on edge joints of Inconel 625 sheets processed with laser welding, Opt Laser. Technol. 93 (2017) 180–186.

DOI: 10.1016/j.optlastec.2017.03.011

Google Scholar

[17] Badiger, R. I.; Narendranath, S.; Srinath, M. S. Optimization of Process Parameters by Taguchi Grey Relational Analysis in Joining Inconel-625 through Microwave Hybrid Heating. Metallogr. Microstruct. Anal. 2019, 8 (1), 92–108.

DOI: 10.1007/s13632-018-0508-4

Google Scholar

[18] Palanivel, R.; Dinaharan, I.; Laubscher, R. F.; Alarifi, I. M. Effect of Nd:YAG Laser Welding on Microstructure and Mechanical Properties of Incoloy Alloy 800. Opt. Laser Technol. 2021, 140 (107039), 107039.

DOI: 10.1016/j.optlastec.2021.107039

Google Scholar

[19] Ramkumar, D.; Sidharth, D.; Prabhakar, P.; Rajendran; Mugundan, G.; Narayanan. Microstructure and Properties of Inconel 718 and AISI 416 Laser Welded Joints. J. Mater. Process. Technol. 2019, 266, 52–62.

DOI: 10.1016/j.jmatprotec.2018.10.039

Google Scholar

[20] Sharma, S. K.; Biswas, K.; Nath, A. K.; Manna, I.; Dutta Majumdar, J. Microstructural Change during Laser Welding of Inconel 718. Optik (Stuttg.) 2020, 218 (165029), 165029.

DOI: 10.1016/j.ijleo.2020.165029

Google Scholar

[21] Shanthos Kumar, G.; Raghukandan, K.; Saravanan, S.; Sivagurumanikandan, N. Optimization of Parameters to Attain Higher Tensile Strength in Pulsed Nd: YAG Laser Welded Hastelloy C-276–Monel 400 Sheets. Infrared Phys. Technol. 2019, 100, 1–10.

DOI: 10.1016/j.infrared.2019.05.002

Google Scholar

[22] Thejasree, P., Manikandan, N., Binoj, J. S., K.C. Varaprasad, Palanisamy, D., & Raju, R. (2021). Numerical simulation and experimental investigation on laser beam welding of Inconel 625. Materials Today: Proceedings, 39, 268–273

DOI: 10.1016/j.matpr.2020.07.042

Google Scholar

[23] Priya, I. I. M.; Vinayagam, B. K. Investigation of Drilling Parameters Using Grey Relational Analysis and Response Surface Methodology of Biaxial Glass Fibre Reinforced with Modified Epoxy Resin Composite. Int. J. Polym. Sci. 2018, 2018, 1–12.

DOI: 10.1155/2018/8629894

Google Scholar

[24] Thejasree, P., Binoj, J. S., Manikandan, N., Krishnamachary, P. C., Raju, R., & Palanisamy, D. (2021). Multi objective optimization of wire electrical discharge machining on Inconel 718 using Taguchi grey relational analysis. Materials Today: Proceedings, 39, 230–235

DOI: 10.1016/j.matpr.2020.06.517

Google Scholar

[25] Adediran, A. A.; Alaneme, K. K.; Oladele, I. O.; Akinlabi, E. T. Microstructural Characteristics and Mechanical Behaviour of Aluminium Matrix Composites Reinforced with Si-Based Refractory Compounds Derived from Rice Husk. Cogent Eng. 2021, 8 (1), 1897928.

DOI: 10.1080/23311916.2021.1897928

Google Scholar

[26] Manikandan, N.; Arulkirubakaran, D.; Palanisamy, D.; Raju, R. Influence of Wire-EDM Textured Conventional Tungsten Carbide Inserts in Machining of Aerospace Materials (Ti–6Al–4V Alloy). Mater. Manuf. Process. 2019, 34 (1), 103–111.

DOI: 10.1080/10426914.2018.1544712

Google Scholar

[27] Patel, K. M.; Pandey, P. M.; Rao, P. V. Determination of an Optimum Parametric Combination Using a Surface Roughness Prediction Model for EDM of Al2O3/SiCw/TiC Ceramic Composite. Mater. Manuf. Process. 2009, 24 (6), 675–682.

DOI: 10.1080/10426910902769319

Google Scholar

[28] Manikandan, N.; Balasubramanian, K.; Palanisamy, D.; Gopal, P. M.; Arulkirubakaran, D.; Binoj, J. S. Machinability Analysis and ANFIS Modelling on Advanced Machining of Hybrid Metal Matrix Composites for Aerospace Applications. Mater. Manuf. Process. 2019, 34 (16), 1866–1881.

DOI: 10.1080/10426914.2019.1689264

Google Scholar

[29] Prakash, C.; Senthil, P.; Manikandan, N.; Palanisamy, D. Investigations on Machinability Characteristics of Cast Aluminum Alloy Based (LM 26+Graphite+Fly Ash) Hybrid Metal Matrix Composites for Automobile Components. Mater. Manuf. Process. 2021, 1–16.

DOI: 10.1080/10426914.2021.1962531

Google Scholar