[1]
M.J. Donachie, Superalloys: A Technical Guide, second ed., 2002, p.1–409. America (NY).
Google Scholar
[2]
J.C. Lippold, J. Weld, Fla Miami, Investigation of Weld Cracking in Alloy 800, 1984, p.63.
Google Scholar
[3]
Thejasree, P., Manikandan, N., Binoj, J. S., Varaprasad, K. C., Palanisamy, D., & Raju, R. (2021). Numerical simulation and experimental investigation on laser beam welding of Inconel 625. Materials today: proceedings, 39, 268-273.
DOI: 10.1016/j.matpr.2020.07.042
Google Scholar
[4]
N. Nissley, T.D. Anderson, F.F. Noecker, C. Roepke, M. Gallagher, M. Hukle, Dissimilar metal welding of Nitronic 50 HS® and 25% Cr super duplex stainless steel, in: Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE, American Society of Mechanical Engineers (ASME), 2014, https://doi.org/10.1115/OMAE2014- 24706.
DOI: 10.1115/omae2014-24706
Google Scholar
[5]
F. Zapirain, F. Zubiri, F. Garciandía, I. Tolosa, S. Chueca, A. Goiria, Development of laser welding of Ni based superalloys for aeronautic engines applications (experimental process and obtained properties), Phys. Proc. 12 (2011) 105– 112.
DOI: 10.1016/j.phpro.2011.03.014
Google Scholar
[6]
B.S. Yilbas, S. Akthar, Laser welding of Haynes 188 alloy sheet: thermal stress analysis, Int. J. Adv. Manuf. Technol. 56 (2011) 115–124.
DOI: 10.1007/s00170-011-3181-1
Google Scholar
[7]
Natarajan, M., Pasupuleti, T., Giri, J., Sunheriya, N., Katta, L. N., Chadge, R., ... & Ray, K. (2023). Machinability of Titanium Grade 5 Alloy for Wire Electrical Discharge Machining Using a Hybrid Learning Algorithm. Information, 14(8), 439.
DOI: 10.3390/info14080439
Google Scholar
[8]
M. Shakil, M. Ahmad, N.H. Tariq, B.A. Hasan, J.I. Akhter, E. Ahmed, M. Mehmood, M.A. Choudhry, M. Iqbal, Microstructure and hardness studies of electron beam welded Inconel 625 and stainless steel 304L, Vacuum 110 (2014) 121–126.
DOI: 10.1016/j.vacuum.2014.08.016
Google Scholar
[9]
Khan, M. A., Thejasree, P., Natarajan, M., & Narasimhamu, K. L. (2023). Application of a hybrid Taguchi grey approach for determining the optimal parameters on wire electrical discharge machining of Ti6Al4V. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-18.
DOI: 10.1007/s12008-023-01440-3
Google Scholar
[10]
K.H. Song, K. Nakata, Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding, Mater. Des. 31 (2010) 2942–2947.
DOI: 10.1016/j.matdes.2009.12.020
Google Scholar
[11]
M.M.Z. Ahmed, B.P. Wynne, J.P. Martin, Effect of friction stir welding speed on mechanical properties and microstructure of nickel based super alloy Inconel 718, Sci. Technol. Weld. Joi. 18 (8) (2013) 680–687.
DOI: 10.1179/1362171813y.0000000156
Google Scholar
[12]
D.J. Tillack, Welding superalloys for aerospace applications, Weld. J. 1 (2007) 28–32
Google Scholar
[13]
Natarajan, M., Pasupuleti, T., Abdullah, M. M., Mohammad, F., Giri, J., Chadge, R., ... & Soleiman, A. A. (2023). Assessment of Machining of Hastelloy Using WEDM by a Multi-Objective Approach. Sustainability, 15(13), 10105.
DOI: 10.3390/su151310105
Google Scholar
[14]
Thejasree, P., Narasimhamu, K. L., Natarajan, M., & Raju, R. (2022). Generative modelling of laser beam welded Inconel 718 thin weldments using ANFIS based hybrid algorithm. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-9.
DOI: 10.1007/s12008-022-00959-1
Google Scholar
[15]
Thejasree, P., & Natarajan, M. (2023). Applications of hybrid artificial intelligence tool in wire electro discharge machining of 7075 aluminium alloy. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-12.
DOI: 10.1007/s12008-023-01315-7
Google Scholar
[16]
F. Caiazzo, V. Alfieri, F. Cardaropoli, V. Sergi, Investigation on edge joints of Inconel 625 sheets processed with laser welding, Opt Laser. Technol. 93 (2017) 180–186.
DOI: 10.1016/j.optlastec.2017.03.011
Google Scholar
[17]
Badiger, R. I.; Narendranath, S.; Srinath, M. S. Optimization of Process Parameters by Taguchi Grey Relational Analysis in Joining Inconel-625 through Microwave Hybrid Heating. Metallogr. Microstruct. Anal. 2019, 8 (1), 92–108.
DOI: 10.1007/s13632-018-0508-4
Google Scholar
[18]
Palanivel, R.; Dinaharan, I.; Laubscher, R. F.; Alarifi, I. M. Effect of Nd:YAG Laser Welding on Microstructure and Mechanical Properties of Incoloy Alloy 800. Opt. Laser Technol. 2021, 140 (107039), 107039.
DOI: 10.1016/j.optlastec.2021.107039
Google Scholar
[19]
Ramkumar, D.; Sidharth, D.; Prabhakar, P.; Rajendran; Mugundan, G.; Narayanan. Microstructure and Properties of Inconel 718 and AISI 416 Laser Welded Joints. J. Mater. Process. Technol. 2019, 266, 52–62.
DOI: 10.1016/j.jmatprotec.2018.10.039
Google Scholar
[20]
Sharma, S. K.; Biswas, K.; Nath, A. K.; Manna, I.; Dutta Majumdar, J. Microstructural Change during Laser Welding of Inconel 718. Optik (Stuttg.) 2020, 218 (165029), 165029.
DOI: 10.1016/j.ijleo.2020.165029
Google Scholar
[21]
Shanthos Kumar, G.; Raghukandan, K.; Saravanan, S.; Sivagurumanikandan, N. Optimization of Parameters to Attain Higher Tensile Strength in Pulsed Nd: YAG Laser Welded Hastelloy C-276–Monel 400 Sheets. Infrared Phys. Technol. 2019, 100, 1–10.
DOI: 10.1016/j.infrared.2019.05.002
Google Scholar
[22]
Thejasree, P., Manikandan, N., Binoj, J. S., K.C. Varaprasad, Palanisamy, D., & Raju, R. (2021). Numerical simulation and experimental investigation on laser beam welding of Inconel 625. Materials Today: Proceedings, 39, 268–273
DOI: 10.1016/j.matpr.2020.07.042
Google Scholar
[23]
Priya, I. I. M.; Vinayagam, B. K. Investigation of Drilling Parameters Using Grey Relational Analysis and Response Surface Methodology of Biaxial Glass Fibre Reinforced with Modified Epoxy Resin Composite. Int. J. Polym. Sci. 2018, 2018, 1–12.
DOI: 10.1155/2018/8629894
Google Scholar
[24]
Thejasree, P., Binoj, J. S., Manikandan, N., Krishnamachary, P. C., Raju, R., & Palanisamy, D. (2021). Multi objective optimization of wire electrical discharge machining on Inconel 718 using Taguchi grey relational analysis. Materials Today: Proceedings, 39, 230–235
DOI: 10.1016/j.matpr.2020.06.517
Google Scholar
[25]
Adediran, A. A.; Alaneme, K. K.; Oladele, I. O.; Akinlabi, E. T. Microstructural Characteristics and Mechanical Behaviour of Aluminium Matrix Composites Reinforced with Si-Based Refractory Compounds Derived from Rice Husk. Cogent Eng. 2021, 8 (1), 1897928.
DOI: 10.1080/23311916.2021.1897928
Google Scholar
[26]
Manikandan, N.; Arulkirubakaran, D.; Palanisamy, D.; Raju, R. Influence of Wire-EDM Textured Conventional Tungsten Carbide Inserts in Machining of Aerospace Materials (Ti–6Al–4V Alloy). Mater. Manuf. Process. 2019, 34 (1), 103–111.
DOI: 10.1080/10426914.2018.1544712
Google Scholar
[27]
Patel, K. M.; Pandey, P. M.; Rao, P. V. Determination of an Optimum Parametric Combination Using a Surface Roughness Prediction Model for EDM of Al2O3/SiCw/TiC Ceramic Composite. Mater. Manuf. Process. 2009, 24 (6), 675–682.
DOI: 10.1080/10426910902769319
Google Scholar
[28]
Manikandan, N.; Balasubramanian, K.; Palanisamy, D.; Gopal, P. M.; Arulkirubakaran, D.; Binoj, J. S. Machinability Analysis and ANFIS Modelling on Advanced Machining of Hybrid Metal Matrix Composites for Aerospace Applications. Mater. Manuf. Process. 2019, 34 (16), 1866–1881.
DOI: 10.1080/10426914.2019.1689264
Google Scholar
[29]
Prakash, C.; Senthil, P.; Manikandan, N.; Palanisamy, D. Investigations on Machinability Characteristics of Cast Aluminum Alloy Based (LM 26+Graphite+Fly Ash) Hybrid Metal Matrix Composites for Automobile Components. Mater. Manuf. Process. 2021, 1–16.
DOI: 10.1080/10426914.2021.1962531
Google Scholar