Challenges in Syngas Fermentation for Bioethanol Production: Syngas Composition

Article Preview

Abstract:

Energy challenges in developing countries are more significant if they continue to use fossil materials and have an impact on air quality. Lignocellulosic biomass can be an alternative to new renewable sources to replace fossil materials. Indonesia produces various sources of lignocellulosic biomass, which can be used in multiple energy sources such as bioethanol. The hybrid pathway is one of the routes for producing bioethanol. The first stage of the hybrid process is the conversion of biomass into CO, CO2, and H2 (syngas) gas through the gasification process. Then the syngas is converted into bioethanol through fermentation using microorganisms as biocatalysts. The bioethanol production line is the Wood-Ljungdahlii pathway. Factors that affect syngas are the type of biomass (chemical, physical, and morphological properties) and the gasification process (type of gasifier, temperature, gasification agent, and ratio equilibrium (ER)). This paper reviews the challenges in implementing syngas fermentation. In particular, variations in the composition of syngas as a substrate for fermentation.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-19

Citation:

Online since:

March 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] OECD. OECD Green Growth Studies. D. 2012;104.

Google Scholar

[2] Twas. Sustainable energy for developing countries. SAPI EN S Surveys and Perspectives Integrating Environment and Society [Internet]. 2008;2.1:1–48. Available from: http://sapiens.revues.org/823%5Cnwww.twas.org

Google Scholar

[3] Naik SN, Goud V v., Rout PK, Dalai AK. Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews. 2010;14:578–97.

DOI: 10.1016/j.rser.2009.10.003

Google Scholar

[4] Osamu K CH. Biomass Handbook. Gordon Science Publisher. (1989)

Google Scholar

[5] Bharadwaj Kummamuru. WBA Global Bioenergy Statistics 2017. World Bioenergy Association [Internet]. 2017;80. Available from: http://www.worldbioenergy.org/ uploads/WBA GBS 2017_hq.pdf

Google Scholar

[6] Alonso DM, Bond JQ, Dumesic JA. Catalytic conversion of biomass to biofuels. Green Chemistry. 2010; 12: 1493–513.

DOI: 10.1039/c004654j

Google Scholar

[7] Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev. 2006;106:4044–98.

DOI: 10.1021/cr068360d

Google Scholar

[8] Rutz D. Feedstock Production. BioFuel Technology Handbook. 2007;72.

Google Scholar

[9] Liew FM, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M. Gas Fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol. Frontiers Media S.A.; 2016.

DOI: 10.3389/fmicb.2016.00694

Google Scholar

[10] Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant Journal. 2008;54:559–68.

DOI: 10.1111/j.1365-313x.2008.03463.x

Google Scholar

[11] Sánchez C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol Adv [Internet]. Elsevier Inc.; 2009; 27: 185–94. Available from:

DOI: 10.1016/j.biotechadv.2008.11.001

Google Scholar

[12] Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers Biorefin. Springer Verlag; 2014. p.157–91.

DOI: 10.1007/s13399-013-0097-z

Google Scholar

[13] Griffin DW, Schultz MA. Fuel and chemical products from biomass syngas: A comparison of gas fermentation to thermochemical conversion routes. Environ Prog Sustain Energy. 2012;31:219–24.

DOI: 10.1002/ep.11613

Google Scholar

[14] Michailos S, Parker D, Webb C. Munich Personal RePEc Archive Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation Design, sustainability analysis and multiobjective optimisation of ethanol production via syngas fermentation. 2017.

DOI: 10.1007/s12649-017-0151-3

Google Scholar

[15] Daniell J, Köpke M, Simpson SD. Commercial biomass syngas fermentation. Energies (Basel). 2012.

DOI: 10.3390/en5125372

Google Scholar

[16] Huber GW, Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angewandte Chemie - International Edition. 2007;46:7184–201.

DOI: 10.1002/anie.200604504

Google Scholar

[17] IsraelGómez-CastroSalvadorHernández C-AG-I. Production processes from lignocellulosic feedstock. 2021;129–69.

Google Scholar

[18] Hakeem KR, Jawaid M, Alothman OY. Agricultural biomass based potential materials. Agricultural Biomass Based Potential Materials. 2015;1–505.

DOI: 10.1007/978-3-319-13847-3

Google Scholar

[19] Kalita P, Baruah D. Investigation of Biomass Gasifier Product Gas Composition and its Characterization. Energy, Environment, and Sustainability. 2018.

DOI: 10.1007/978-981-10-7335-9_5

Google Scholar

[20] Parthasarathy P, Narayanan SK. Effect of Hydrothermal Carbonization Reaction Parameters on. Environ Prog Sustain Energy. 2014;33:676–80.

Google Scholar

[21] McKendry P. Energy production from biomass (part 2): Conversion technologies. Bioresour Technol. 2002;83:47–54.

Google Scholar

[22] McKendry P. Energy production from biomass (part 3): Gasification technologies. Bioresour Technol. 2002;83:55–63.

DOI: 10.1016/s0960-8524(01)00120-1

Google Scholar

[23] Mukhopadhyay K. An assessment of a Biomass Gasification based Power Plant in the Sunderbans. Biomass Bioenergy. 2004;27:253–64.

DOI: 10.1016/j.biombioe.2003.11.008

Google Scholar

[24] Basu P. Biomass Gasification and Pyrolysis: Practical Design and Theory.

Google Scholar

[25] Pérez JF, Melgar A, Benjumea PN. Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: An experimental study. Fuel. 2012;96:487–96.

DOI: 10.1016/j.fuel.2012.01.064

Google Scholar

[26] Chan YH, Syed Abdul Rahman SNF, Lahuri HM, Khalid A. Recent progress on CO-rich syngas production via CO2 gasification of various wastes: A critical review on efficiency, challenges and outlook. Environmental Pollution [Internet]. Elsevier Ltd; 2021;278:116843. Available from:

DOI: 10.1016/j.envpol.2021.116843

Google Scholar

[27] Khushboo, Ankush, Yadav K, Mandal MK, Pal S, Chaudhuri H, et al. Bioeconomy of municipal solid waste (MSW) using gas fermentation [Internet]. Current Developments in Biotechnology and Bioengineering: Resource Recovery from Wastes. Elsevier B.V.; 2020. Available from:

DOI: 10.1016/B978-0-444-64321-6.00015-X

Google Scholar

[28] D. Ramachandriya K, K. Kundiyana D, M. Sharma A, Kumar A, K. Atiyeh H, L. Huhnke R, et al. Critical factors affecting the integration of biomass gasification and syngas fermentation technology. AIMS Bioeng. 2016;3:188–210.

DOI: 10.3934/bioeng.2016.2.188

Google Scholar

[29] He Q, Guo Q, Umeki K, Ding L, Wang F, Yu G. Soot formation during biomass gasification: A critical review. Renewable and Sustainable Energy Reviews [Internet]. Elsevier Ltd; 2021;139:110710. Available from:

DOI: 10.1016/j.rser.2021.110710

Google Scholar

[30] Patel VR, Patel D, Varia NS, Patel RN. Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier. Energy. 2017;119:834–44.

DOI: 10.1016/j.energy.2016.11.057

Google Scholar

[31] Gómez-Barea A, Leckner B. Modeling of biomass gasification in fluidized bed. Prog Energy Combust Sci. 2010;36:444–509.

DOI: 10.1016/j.pecs.2009.12.002

Google Scholar

[32] Molino A, Chianese S, Musmarra D. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry [Internet]. Elsevier B.V.; 2016;25:10–25. Available from:

DOI: 10.1016/j.jechem.2015.11.005

Google Scholar

[33] Srivastava T. Renewable Energy (Gasification). Advance in Electronic and Electric Engineering [Internet]. 2013;3:1243–50. Available from: http://www.ripublication.com/aeee.htm

Google Scholar

[34] Murugan PC, Joseph Sekhar S. Investigation on the yield of producer gas from tamarind shell (Tamarindus Indica) as feedstock in an ImberLucas, C. (2005). High temperature air/steam gasification of biomass in an updraft fixed bed batch type gasifier [Elektronisk resurs]. Materials Sci. Fuel [Internet]. Elsevier Ltd; 2021;292:120310. Available from: https://doi.org/10.1016 /j.fuel.2021.120310

DOI: 10.1016/j.fuel.2021.120310

Google Scholar

[35] Sikarwar VS, Zhao M. Biomass Gasification [Internet]. Encyclopedia of Sustainable Technologies. Elsevier; 2017. Available from:

DOI: 10.1016/B978-0-12-409548-9.10533-0

Google Scholar

[36] Slivka RM, Chinn MS, Grunden AM. Gasification and synthesis gas fermentation: An alternative route to biofuel production. Biofuels. 2011;2:405–19.

DOI: 10.4155/bfs.11.108

Google Scholar

[37] Lucas C. High temperature air/steam gasification of biomass in an updraft fixed bed batch type gasifier [Elektronisk resurs]. Materials science. 2005;9–25.

Google Scholar

[38] Chopra S, Jain A. A review of fixed bed gasification systems for biomass. Agricultural Engineering International: CIGR … [Internet]. 2007;IX:1–23. Available from: http://cigrjournal.org/index.php/Ejounral/article/view/960/954

Google Scholar

[39] Swanson RM, Platon A, Satrio JA, Brown RC. Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel [Internet]. Elsevier Ltd; 2010;89:S11–9. Available from:

DOI: 10.1016/j.fuel.2010.07.027

Google Scholar

[40] Devi L, Ptasinski KJ, Janssen FJJG. A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy. 2003;24:125–40.

DOI: 10.1016/s0961-9534(02)00102-2

Google Scholar

[41] Wu C zhi, Yin X li, Ma L long, Zhou Z qiu, Chen H ping. Operational characteristics of a 1.2-MW biomass gasification and power generation plant. Biotechnol Adv [Internet]. Elsevier Inc.; 2009;27:588–92. Available from:

DOI: 10.1016/j.biotechadv.2009.04.020

Google Scholar

[42] Kumar A, Jones DD, Hanna MA. Thermochemical biomass gasification: A review of the current status of the technology. Energies (Basel). 2009;2:556–81.

DOI: 10.3390/en20300556

Google Scholar

[43] Paethanom A, Nakahara S, Kobayashi M, Prawisudha P, Yoshikawa K. Performance of tar removal by absorption and adsorption for biomass gasification. Fuel Processing Technology [Internet]. Elsevier B.V.; 2012;104:144–54. Available from:

DOI: 10.1016/j.fuproc.2012.05.006

Google Scholar

[44] Carvalho MMO, Cardoso M, Vakkilainen EK. Biomass gasification for natural gas substitution in iron ore pelletizing plants. Renew Energy [Internet]. Elsevier Ltd; 2015;81:566–77. Available from:

DOI: 10.1016/j.renene.2015.03.056

Google Scholar

[45] Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR. Biomass gasification in a circulating fluidized bed. Biomass Bioenergy. 2004;26:171–93.

DOI: 10.1016/s0961-9534(03)00084-9

Google Scholar

[46] Zhang K, Chang J, Guan Y, Chen H, Yang Y, Jiang J. Lignocellulosic biomass gasification technology in China. Renew Energy [Internet]. Elsevier Ltd; 2013;49:175–84. Available from:

DOI: 10.1016/j.renene.2012.01.037

Google Scholar

[47] Pedroso DT, Aiello RC, Conti L, Mascia S. Biomass gasification on a new really tar free downdraft gasifier. Revista Ciencias Exatas. 2005;11:59–62.

Google Scholar

[48] Munasinghe PC, Khanal SK. Syngas fermentation to biofuel: Evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog. 2010;26:1616–21.

DOI: 10.1002/btpr.473

Google Scholar

[49] Phillips JR, Huhnke RL, Atiyeh HK. Syngas fermentation: A microbial conversion process of gaseous substrates to various products. Fermentation. 2017;3.

DOI: 10.3390/fermentation3020028

Google Scholar

[50] Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A. 2010;107:13087–92.

DOI: 10.1073/pnas.1004716107

Google Scholar

[51] Devarapalli M, Atiyeh HK. A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Research Journal. Green Wave Publishing of Canada; 2015. p.268–80.

DOI: 10.18331/brj2015.2.3.5

Google Scholar

[52] Kundiyana DK, Huhnke RL, Wilkins MR. Syngas fermentation in a 100-L pilot scale fermentor:Design and process considerations. J Biosci Bioeng [Internet]. The Society for Biotechnology, Japan; 2010;109:492–8. Available from: http://dx.doi.org/10.1016/j.jbiosc. 2009.10.022

DOI: 10.1016/j.jbiosc.2009.10.022

Google Scholar

[53] Maddipati P, Atiyeh HK, Bellmer DD, Huhnke RL. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour Technol [Internet]. Elsevier Ltd; 2011;102:6494–501. Available from:

DOI: 10.1016/j.biortech.2011.03.047

Google Scholar

[54] Sun X, Atiyeh HK, Huhnke RL, Tanner RS. Syngas fermentation process development for production of biofuels and chemicals: A review. Bioresour Technol Rep [Internet]. Elsevier; 2019;7:100279. Available from:

DOI: 10.1016/j.biteb.2019.100279

Google Scholar

[55] Anggraini ID, Keryanti, Kresnowati MTAP, Purwadi R, Noda R, Watanabe T, et al. Bioethanol production via syngas fermentation of clostridium ljungdahlii in a hollow fiber membrane supported bioreactor. International Journal of Technology. Faculty of Engineering, Universitas Indonesia; 2019;10:481–90.

DOI: 10.14716/ijtech.v10i3.2913

Google Scholar

[56] Abubackar HN, Veiga MC, Kennes C. Biological conversion of carbon monoxide: Rich syngas or waste gases to bioethanol. Biofuels, Bioproducts and Biorefining. 2011. p.93–114.

DOI: 10.1002/bbb.256

Google Scholar

[57] Francois J, Abdelouahed L, Mauviel G, Patisson F, Mirgaux O, Rogaume C, et al. Detailed process modeling of a wood gasification combined heat and power plant. Biomass Bioenergy [Internet]. Elsevier Ltd; 2013;51:68–82. Available from: http://dx.doi.org/10.1016/j.biombioe. 2013.01.004

DOI: 10.1016/j.biombioe.2013.01.004

Google Scholar

[58] Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR. Bioconversion of synthesis gas to second generation biofuels: A review. Renewable and Sustainable Energy Reviews [Internet]. Elsevier Ltd; 2011;15:4255–73. Available from:

DOI: 10.1016/j.rser.2011.07.124

Google Scholar

[59] Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta Proteins Proteom. 2008. p.1873–98.

DOI: 10.1016/j.bbapap.2008.08.012

Google Scholar

[60] Köpke M, Mihalcea C, Bromley JC, Simpson SD. Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol. 2011;22:320–5.

DOI: 10.1016/j.copbio.2011.01.005

Google Scholar

[61] Humphreys CM, Minton NP. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr Opin Biotechnol [Internet]. Elsevier Ltd; 2018;50:174–81. Available from:

DOI: 10.1016/j.copbio.2017.12.023

Google Scholar

[62] Henstra AM, Sipma J, Rinzema A, Stams AJ. Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol. 2007;18:200–6.

DOI: 10.1016/j.copbio.2007.03.008

Google Scholar

[63] Sun X, Atiyeh HK, Huhnke RL, Tanner RS. Syngas fermentation process development for production of biofuels and chemicals: A review. Bioresour Technol Rep [Internet]. Elsevier Ltd; 2019; 7:100279. Available from:

DOI: 10.1016/j.biteb.2019.100279

Google Scholar

[64] Tanner RS, Miller LM, Yang D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol. 1993;43:232–6.

DOI: 10.1099/00207713-43-2-232

Google Scholar

[65] Liu K, Atiyeh HK, Tanner RS, Wilkins MR, Huhnke RL. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresour Technol [Internet]. Elsevier Ltd; 2012;104:336–41. Available from:

DOI: 10.1016/j.biortech.2011.10.054

Google Scholar

[66] Shen Y. Attached-growth bioreactors for syngas fermentation to biofuel. Graduate Theses and Dissertation Paper 13645 Iowa State University, USA. 2013;143.

Google Scholar

[67] Shen Y, Brown R, Wen Z. Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J [Internet]. Elsevier B.V.; 2014;85:21–9. Available from:

DOI: 10.1016/j.bej.2014.01.010

Google Scholar

[68] Srivastava N, Rawat R, Singh Oberoi H, Ramteke PW. A review on fuel ethanol production from lignocellulosic biomass. Int J Green Energy. 2015;12:949–60.

DOI: 10.1080/15435075.2014.890104

Google Scholar

[69] Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR. Bioconversion of synthesis gas to second generation biofuels: A review. Renewable and Sustainable Energy Reviews [Internet]. Elsevier Ltd; 2011;15:4255–73. Available from:

DOI: 10.1016/j.rser.2011.07.124

Google Scholar

[70] Johnstone AH. CRC Handbook of Chemistry and Physics-69th Edition Editor in Chief R. C. Weast, CRC Press Inc., Boca Raton, Florida, 1988, p.2400, price £57.50. ISBN 0-8493-0369-5. Journal of Chemical Technology & Biotechnology. 2007;50:294–5.

DOI: 10.1002/jctb.280500215

Google Scholar

[71] Moutafchieva D, Popova D, Dimitrova M, Tchaoushev S. Experimental determination of the volumetric mass transfer coefficient. Journal of the University of Chemical Technology and Metallurgy. 2013;48:351–6.

Google Scholar

[72] Krista GM, Kresnowati MTAP. Modeling the synthetic gas fermentation for bioethanol production. IOP Conf Ser Earth Environ Sci. 2022;963.

DOI: 10.1088/1755-1315/963/1/012013

Google Scholar

[73] Keryanti, Kresnowati MTAP, Setiadi T. Evaluation of gas mass transfer in reactor for syngas fermentation. AIP Conf Proc. American Institute of Physics Inc.; 2019.

DOI: 10.1063/1.5094986

Google Scholar

[74] Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS. Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng. 2004;86:587–94.

DOI: 10.1002/bit.20071

Google Scholar

[75] Ahmed A, Cateni BG, Huhnke RL, Lewis RS. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass Bioenergy. 2006;30:665–72.

DOI: 10.1016/j.biombioe.2006.01.007

Google Scholar

[76] Monir MU, Aziz AA, Khatun F, Yousuf A. Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum. Renew Energy [Internet]. Elsevier Ltd; 2020;157:1116–23. Available from:

DOI: 10.1016/j.renene.2020.05.099

Google Scholar

[77] Ciferno JP, Marano JJ. Benchmarking biomass gasification technologies for fuels, chemicals and hydrogen production. US Department of Energy National Energy [Internet]. 2002;58. Available from: http://seca.doe.gov/technologies/coalpower/gasification/pubs/pdf/ BMassGasFinal.pdf

Google Scholar

[78] Ahmed, A and Lewis RS. Fermentation of Biomass-Generated Synthesis Gas: Effect of Nitric Acid. (2007)

Google Scholar

[79] Xu D, Lewis RS. Syngas fermentation to biofuels: Effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass Bioenergy [Internet]. Elsevier Ltd; 2012;45:303–10. Available from:

DOI: 10.1016/j.biombioe.2012.06.022

Google Scholar

[80] Infantes A, Kugel M, Raffelt K, Neumann A. Side‐by‐side comparison of clean and biomass-derived, impurity‐containing syngas as substrate for acetogenic fermentation with clostridium ljungdahlii. Fermentation. 2020.

DOI: 10.3390/fermentation6030084

Google Scholar

[81] Doll K, Rückel A, Kämpf P, Wende M, Weuster-Botz D. Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioprocess Biosyst Eng [Internet]. Springer Berlin Heidelberg; 2018;41:1403–16. Available from:

DOI: 10.1007/s00449-018-1969-1

Google Scholar

[82] Liakakou ET, Infantes A, Neumann A, Vreugdenhil BJ. Connecting gasification with syngas fermentation: Comparison of the performance of lignin and beech wood. Fuel [Internet]. Elsevier Ltd; 2021;290:120054. Available from:

DOI: 10.1016/j.fuel.2020.120054

Google Scholar

[83] Jack J, Lo J, Maness PC, Ren ZJ. Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas. Biomass Bioenergy [Internet]. Elsevier Ltd; 2019;124:95–101. Available from:

DOI: 10.1016/j.biombioe.2019.03.011

Google Scholar

[84] Lanzillo F, Ruggiero G, Raganati F, Russo ME, Marzocchella A. Batch syngas fermentation by clostridium carboxidivorans for production of acids and alcohols. Processes. 2020;8:1–13.

DOI: 10.3390/pr8091075

Google Scholar

[85] He Y, Kennes C, Lens PNL. Enhanced solventogenesis in syngas bioconversion: Role of process parameters and thermodynamics. Chemosphere [Internet]. Elsevier Ltd; 2022; 299: 134425. Available from:

DOI: 10.1016/j.chemosphere.2022.134425

Google Scholar

[86] Hermann M, Teleki A, Weitz S, Niess A, Freund A, Bengelsdorf FR, et al. Electron availability in CO2, CO and H2 mixtures constrains flux distribution, energy management and product formation in Clostridium ljungdahlii. Microb Biotechnol. 2020;13:1831–46.

DOI: 10.1111/1751-7915.13625

Google Scholar