Chemical Composition of Hydrodistillation and Solvent Free Microwave Extraction of Essential Oils from Plectranthus amboinicus and Melaleuca cajupati Leaves and their Repellent Activity

Article Preview

Abstract:

Extraction of the native plants Plectranthus amboinicus and Melaleuca cajupati leaves have been carried out using traditional hydrodistillation (steam distillation) and solvent free microwave-assisted extraction methods at different temperatures and microwave irradiation powers. The chemical compositions of the essential oils extracted were identified using gas chromatography analysis. The ideal extraction time for Pletranthus amboinicus and Melaleuca cajupati were 120 min with microwave power 200 W and 400 W, respectively with the calculated extraction yield were 0.034 % and 0.276 %, respectively. In this paper, the results of the selected microwave powers, first oil drops, and extraction time are presented as well as the findings of the chemical compositions present in both plants are also discussed.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] L. G. David Young, V. C, USA, Safety and Efficacy of DEET and Permethrin in the Prevention of Arthropod Attack, Military Medicine. 5, 163 (1998), p.324.

DOI: 10.1093/milmed/163.5.324

Google Scholar

[2] M. Y. Lee, Essential Oils as Repellents against Arthropods, Biomed Res Int (2018).

Google Scholar

[3] Z. Màsum, M. Mahfud, A. Altway, Parameter for Scale-Up of Extraction Cymbopogon Nardus Dry Leaf using Microwave Assisted Hydro-Distillation. 2 (2019), pp.126-133.

DOI: 10.5937/jaes17-20216

Google Scholar

[4] H. T. Huang, Z. H. Liao, Y. S. Wu, Y. J. Lin, Y. S. Kang, F. H. Nan, Effects of Bidens alba and Plectranthus amboinicus dietary supplements on nonspecific immune responses, growth, and resistance to Vibrio alginolyticus in white leg shrimp (Penaeus vannamei), Aquaculture. 546, 737306 (2022).

DOI: 10.1016/j.aquaculture.2021.737306

Google Scholar

[5] A. P. Sunitha, K. Sandeep, J. Rose, P. Hajara, K. J. Saji, Carbon quantum dots synthesized from Plectranthus Amboinicus: An eco-friendly material with excellent non-linear optical properties, Mater Today Proc. 47 (2021) pp.1601-1604.

DOI: 10.1016/j.matpr.2021.04.288

Google Scholar

[6] G. Arumugam, M. K. Swamy, U. R. Sinniah, Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance, Molecules. 21, 4 (2016).

DOI: 10.3390/molecules21040369

Google Scholar

[7] T.T. Hein, N.D. Chinh, P.T. Nguyen, T.T. Van, V.D. Nguyen, B.L. Giang, N.T. Duy, Research on lemongrass oil extraction technology (Hydrodistillation, microwave-assisted hydrodistillation), Indonesian J. Chemistry. 19, 4 (2019), pp.1000-1007.

DOI: 10.22146/ijc.40883

Google Scholar

[8] H. T. H. Nguyen, A. Rimbawanto, Prastyono, N. K. Kartikawati, H. Wu, Genetic improvement for essential oil yield and quality in Melaleuca cajuputi, Ind Crops Prod. 137 (2019), pp.681-686.

DOI: 10.1016/j.indcrop.2019.05.061

Google Scholar

[9] X. Zhang, Y. Guo, L. Guo, H. Jiang, Q. Ji, Vitro Evaluation of Antioxidant and Antimicrobial Activities of Melaleuca alternifolia Essential Oil, Hindawi BioMed Research Inter. (2018).

DOI: 10.1155/2018/2396109

Google Scholar

[10] D. Kostrzewa, A. Dobrzyńska-Inger, R. Reszczyński, Pilot scale supercritical CO2 extraction of carotenoids from sweet paprika (Capsicum annuum L.): Influence of particle size and moisture content of plant material, LWT Food Sci. and Tech. 136, 110345 (2021).

DOI: 10.1016/j.lwt.2020.110345

Google Scholar

[11] H. S. Kusuma, M. Mahfud, Preliminary study: Kinetics of oil extraction from basil (Ocimum basilicum) by microwave-assisted hydrodistillation and solvent-free microwave extraction, South African J. Chemical Engineering. 21 (2016), pp.49-53.

DOI: 10.1016/j.sajce.2016.06.001

Google Scholar

[12] H. S. Kusuma, M. Mahfud, Comparison of conventional and microwave-assisted distillation of essential oil from Pogostemon cablin leaves: Analysis and modelling of heat and mass transfer, J. Appl. Res. Med. Aromat. Plants. 4 (2017, pp.55-65.

DOI: 10.1016/j.jarmap.2016.08.002

Google Scholar

[13] M. T. Golmakani, K. Rezaei, Comparison of microwave-assisted hydrodistillation withthe traditional hydrodistillation method in the extractionof essential oils from Thymus vulgaris L., Food Chem. 109, 4 (2008), pp.925-930.

DOI: 10.1016/j.foodchem.2007.12.084

Google Scholar

[14] Y. S. Chen, H. M. Yu, J. J. Shie, T. J. R. Cheng, C. Y. Wu, J. M. Fang, C. H. Wong, Chemical constituents of Plectranthus amboinicus and the synthetic analogs possessing anti-inflammatory activity, Bioorg Med Chem. 22, 5 (2014), pp.1766-1772.

DOI: 10.1016/j.bmc.2014.01.009

Google Scholar

[15] S. Pimentel-Moral, I. Borrás-Linares, J. Lozano-Sánchez, D. Arráez-Román, A. Martínez-Férez, A. Segura-Carretero, Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds, J. Pharm Biomed Anal. 156 (2018), pp.313-322.

DOI: 10.1016/j.jpba.2018.04.050

Google Scholar

[16] G. A. Cardoso-Ugarte, G. P. Juárez-Becerra, M. E. Sosa-Morales, A. López-Malo, Microwave-assisted extraction of essential oils from herbs, J. Microwave Power and Electromagnetic Energy. 47, 1 (2013), pp.63-72.

DOI: 10.1080/08327823.2013.11689846

Google Scholar

[17] M. E. Lucchesi, F. Chemat, J. Smadja, Solvent-free microwave extraction: An innovative tool for rapid extraction of essential oil from aromatic herbs and spices, J. Microwave Power and Electromagnetic Energy. 39 (2004), pp.135-139.

DOI: 10.1080/08327823.2004.11688514

Google Scholar

[18] I. R. Kubra, D. Kumar, L. J. M. Rao, Emerging Trends in Microwave Processing of Spices and Herbs, Crit. Rev. Food Sci. Nutr. 56, 13 (2016), pp.2160-2173.

DOI: 10.1080/10408398.2013.818933

Google Scholar

[19] S. Karakaya, S. N. El, N. Karagozlu, S. Sahin, G. Sumnu, B. Bayramoglu, Microwave-Assisted hydrodistillation of essential oil from rosemary,J. Food Sci. Technol. 51, 6 (2014), pp.1056-1065.

DOI: 10.1007/s13197-011-0610-y

Google Scholar

[20] M. Azeem, T. Zaman, M. Tahir, A. Haris, Z. Iqbal, M. Binyameen, A. Nazir, S. A. Shad, S. Majeed, R. Mozuraitis, Chemical composition and repellent activity of native plants essential oils against dengue mosquito, Aedes aegypti, Ind Crops Prod. 140 (2019).

DOI: 10.1016/j.indcrop.2019.111609

Google Scholar

[21] B. S. Park, W. S. Choi, J. H. Kim, K. H. Kim, S. E. Lee, Monoterpenes from thyme (Thymus vulgaris) as potential mosquito repellents, J. Am Mosq Control Assoc, 21, 1 (2005), pp.80-83.

DOI: 10.2987/8756-971x(2005)21[80:mfttva]2.0.co;2

Google Scholar

[22] Y. Trongtokit, Y. Rongsriyam, N. Komalamisra, C. Apiwathnasorn, Comparative repellency of 38 essential oils against mosquito bites, Phytotherapy Research. 19, 4 (2005), pp.303-309.

DOI: 10.1002/ptr.1637

Google Scholar

[23] A. Seyoum, K. Palsson, S. Kung, E. W. Kabiru, W. Lwande, G. F. Killen, A. Hasannali, B. G. J. Knols, Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: ethnobotanical studies and application by thermal expulsion and direct burning, Tropical Medicine, and Hygiene. 96 (2002), pp.225-231.

DOI: 10.1016/s0035-9203(02)90084-2

Google Scholar