[1]
Raghunath, K. (2022). The Business and Economics of Space Sustainability. In ASCEND 2022. American Institute of Aeronautics and Astronautics. https://doi.org/
DOI: 10.2514/6.2022-4225
Google Scholar
[2]
Brundtland, G. H. (1987). Report of the World Commission on Environment and Development: Our Common Future. UN, 14(23), 5135–5140
DOI: 10.1021/bi00694a018
Google Scholar
[3]
Schrogl, K.-U., Mathieu, C., & Lukaszczyk, A. (2009). Threats, Risks and Sustainability — Answers by Space. 2
DOI: 10.1007/978-3-211-87450-9
Google Scholar
[4]
Gupta, B., & Sinha Roy, R. (2018). Sustainability of Outer Space: Facing the Challenge of Space Debris. Environmental Policy and Law, 48(1), 3–7
DOI: 10.3233/EPL-180042
Google Scholar
[5]
COPUOS, U. (2018). Committee on the Peaceful Uses of Outer Space Guidelines for the Long-term Sustainability of Outer Space Activities. https://www.unoosa.org/res/oosadoc/data/ documents/2018/aac_1052018crp/aac_1052018crp_20_0_html/AC105_2018_CRP20E.pdf
DOI: 10.18356/9789210021852
Google Scholar
[6]
Toivonen, A. (2022). Sustainability dimensions in space tourism: the case of Finland. Journal of Sustainable Tourism, 30(9), 2223–2239
DOI: 10.1080/09669582.2020.1783276
Google Scholar
[7]
Klinger, J. M. (2021). Environmental Geopolitics and Outer Space. Geopolitics, 26(3), 666–703
DOI: 10.1080/14650045.2019.1590340
Google Scholar
[8]
Aganaba-Jeanty, T. (2016). Space Sustainability and the Freedom of Outer Space. Astropolitics, 14(1), 1–19
DOI: 10.1080/14777622.2016.1148463
Google Scholar
[9]
ASD-Eurospace. (2017). Space Sector Contribution to the EC REACH Review. https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf.
Google Scholar
[10]
United Nations. (2021). A/RES/76/3 - The "Space2030" Agenda: space as a driver of sustainable development. General Assembly 76th Session 21st Plenary Meeting Agenda Item 30 (Space as a Driver of Sustainable Development). https://www.unoosa.org/oosa/oosadoc/ data/resolutions/2021/general_assembly_76th_session/ares763.html
DOI: 10.18356/9789210024457
Google Scholar
[11]
Guo, H., Dou, C., Chen, H., Liu, J., Fu, B., Li, X., Zou, Z., & Liang, D. (2023). SDGSAT-1: the world's first scientific satellite for sustainable development goals. Science Bulletin, 68(1), 34–38
DOI: 10.1016/j.scib.2022.12.014
Google Scholar
[12]
Miraux, L., Wilson, A. R., & Dominguez Calabuig, G. J. (2022). Environmental sustainability of future proposed space activities. Acta Astronautica, 200, 329–346
DOI: 10.1016/J.ACTAASTRO.2022.07.034
Google Scholar
[13]
Dongfang, W., Baojun, P., & Weike, X. (2017). GEO space debris environment determination in the earth fixed coordinate system. 7th European Conference on Space Debris. ESA Space Debris Office, Darmstadt, ESOC. http://spacedebris2017.sdo.esoc.esa.int
DOI: 10.1016/j.actaastro.2016.10.017
Google Scholar
[14]
Newman, C. J., & Williamson, M. (2018). Space Sustainability: Reframing the Debate. Space Policy, 46, 30–37
DOI: 10.1016/j.spacepol.2018.03.001
Google Scholar
[15]
Kumari, A. (2019). Space Debris: An environmental problem for space missions. https://www.researchgate.net/publication/337292745
Google Scholar
[16]
Prof. Dr. Ram Jakhu. (2011). Towards Long-term Sustainability of Space Activities: Overcoming the Challenges of Space Debris.
Google Scholar
[17]
ESA. (2020). European Space Agency Space Debris Office. https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
DOI: 10.52843/cassyni.d0d36c
Google Scholar
[18]
Lewis, H.G., & Marsh, N. (2021). Deep Time Analysis of Space Debris and Space. April, 20–23.
Google Scholar
[19]
Popova, R., & Schaus, V. (2018). The Legal Framework for Space Debris Remediation as a Tool for Sustainability in Outer Space. Aerospace, 5 (2), 55. https://doi.org/10.3390/ aerospace5020055
DOI: 10.3390/aerospace5020055
Google Scholar
[20]
Colombo, C., Letizia, F., Trisolini, M., Lewis, H. G., Chanoine, A., DuvernoisPierre-Alexis, Austin, J., & Lemmens, S. (2017). Life Cycle Assessment Indicator for Space Debris. 7th European Conference on Space Debris, June. http://hdl.handle.net/11311/1047157
Google Scholar
[21]
Santis, M. DE. (2018). Life Cycle Assessment of Ground Segment in space sector · Indico at ESA / ESTEC. In E. N. ESA - Clean Space (Ed.), Clean Space Industrial Days (23-25 October 2018): https://indico.esa.int/event/234/contributions/3741/
Google Scholar
[22]
De Santis, M., Urbano, G., Blengini, G. A., Zah, R., Gmuender, S., & Ciroth, A. (2013). Environmental impact assessment of space sector: LCA results and applied methodology. Proceedings of the 4th CEAS Conference in Linköping, 2013, 364–373. https://www.dora.lib4ri.ch/empa/islandora/object/empa%3A9414/
Google Scholar
[23]
Kessler, D., Johnson, N., Liou, J.-C., & Matney, M. (2010). The Kessler Syndrome: Implications to Future Space operations. Advances in the Astronautical Sciences, 137.
Google Scholar
[24]
Gallice, A., Maury, T., & del Olmo, E. (2018). Environmental Impact of the Exploitation of the Ariane 6 Launcher System (Clean Sp. Ind. Days, Ed.). ESA - Clean Space, ESTEC, Noordwijk,. https://indico.esa.int/event/234/contributions/3918/attachments/3115/4259/2018CSID_AGallice_EnvironmentalLifeCycleImpactAnalysisOfA6ExploitationPhase.pdf
Google Scholar
[25]
Geerken, T., Vercalsteren, A., & Boonen, K. (2018). USER EXPERIENCE OF THE ESA LCA HANDBOOK AND DATABASE. Clean Space Industry Days-23-25 October 2018. https://indico.esa.int/event/234/contributions/4023/attachments/3020/3643/CSID_2018_User_experience_of_the_ESA_LCA_Handbook_and_database_Theo_Geerken.pdf
Google Scholar
[26]
OECD. (2019). The Space Economy in Figures. The Space Economy in Figures: How Space Contributes to the Global Economy
DOI: 10.1787/C5996201-EN
Google Scholar
[27]
Maury, T., Loubet, P., Serrano, S. M., Gallice, A., & Sonnemann, G. (2020). Application of environmental life cycle assessment (LCA) within the space sector: A state of the art. Acta Astronautica, 170(July 2019), 122–135
DOI: 10.1016/j.actaastro.2020.01.035
Google Scholar
[28]
Maury, T., Loubet, P., Ouziel, J., Saint-Amand, M., Dariol, L., & Sonnemann, G. (2017). Towards the integration of orbital space use in Life Cycle Impact Assessment. Science of The Total Environment, 595, 642–650
DOI: 10.1016/J.SCITOTENV.2017.04.008
Google Scholar
[29]
Maury, T., Loubet, P., Trisolini, M., Gallice, A., Sonnemann, G., & Colombo, C. (2019). Assessing the impact of space debris on orbital resource in life cycle assessment: A proposed method and case study. Science of the Total Environment, 667, 780–791
DOI: 10.1016/j.scitotenv.2019.02.438
Google Scholar
[30]
ISO/TR. (2002). ISO/TR 14062: 2002, Environmental Management — Integrating Environmental aspects into product design and development. https://www.iso.org/obp/ui#iso:std:iso:tr:14062:ed-1:v1:en
DOI: 10.31030/9373781
Google Scholar
[31]
Ko, N., Betten, T., Schestak, I., & Gantner, J. (2017). LCA in space − current status and future development. Matériaux & Techniques, 105(5–6), 507
DOI: 10.1051/MATTECH/2018003
Google Scholar
[32]
Chanoine, A., Duvernois, P., Colombo, C., Trisolini, M., Letizia, F., Lewis, H., Austin, J., & Lemmens, S. (2018). Design indicator for space debris. https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Design+Indicator+for+Space+Debris+2018+Chanoine%2C+A.%2C+Duvernois&btnG=
DOI: 10.1201/b22139-5
Google Scholar
[33]
Kato, A., Lazare, B., Oltrogge, D., & Stokes, H. (2013). Standardization By Iso To Ensure the Sustainability of Space Activities. 6th European Conference on Space Debris, 2013(April), 22–25.
Google Scholar
[34]
Gohardani, A. S., Stanojev, J., Demairé, A., Anflo, K., Persson, M., Wingborg, N., & Nilsson, C. (2014). Green space propulsion: Opportunities and prospects. Progress in Aerospace Sciences, 71, 128–149
DOI: 10.1016/J.PAEROSCI.2014.08.001
Google Scholar
[35]
ESA Clean Space. (2019). The Clean Space Blog. The Clean Space Blog. http://blogs.esa.int/cleanspace/
Google Scholar
[36]
CEAS. (2013). 4th CEAS Conf. Linköping. Proceedings of 4th European Air & Space Conference. http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A657370&dswid=-9030
Google Scholar
[37]
Durrieu, S., & Nelson, R. F. (2013). Earth observation from space - The issue of environmental sustainability. Space Policy, 29(4), 238–250
DOI: 10.1016/j.spacepol.2013.07.003
Google Scholar
[38]
Buchs, R., & Bernauer, T. (2023). Market-based instruments to incentivize more sustainable practices in outer space. Current Opinion in Environmental Sustainability, 60, 101247
DOI: 10.1016/J.COSUST.2022.101247
Google Scholar
[39]
Bongers, A., & Torres, J. L. (2023). Orbital debris and the market for satellites. Ecological Economics, 209
DOI: 10.1016/j.ecolecon.2023.107831
Google Scholar
[40]
ESA LCA working group. (2016). Space system life cycle assessment (LCA) guidelines. https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=ESA+LCA+Working+Group%2C+Space+System+Life+Cycle+Assessment+%28LCA%29+Guidelines%2C+%282016%29.&btnG=#d=gs_cit&t=1705942969255&u=%2Fscholar%3Fq%3Dinfo%3ABK-cWcsTIdMJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
DOI: 10.1007/bf02978930
Google Scholar
[41]
Weeden, B. (2009, March). Space Sustainability: To Preserve and to Protect. SatMagazine. http://www.satmagazine.com/story.php?number=1415465455
Google Scholar
[42]
Anselmo, L., & Pardini, C. (2017). AN INDEX FOR RANKING ACTIVE DEBRIS REMOVAL TARGETS IN LEO. In T., S. F. (Eds.) In: Flohrer (Ed.), 7th European Conference on Space Debris. ESA Space Debris Office, Darmstadt - ESOC, p.18–21. http://spacedebris2017.sdo.esoc.esa.int
DOI: 10.52843/cassyni.d0d36c
Google Scholar
[43]
Bastida Virgili, B., Dolado, J. C., Lewis, H. G., Radtke, J., Krag, H., Revelin, B., Cazaux, C., Colombo, C., Crowther, R., & Metz, M. (2016). Risk to space sustainability from large constellations of satellites. Acta Astronautica, 126(2016), 154–162
DOI: 10.1016/j.actaastro.2016.03.034
Google Scholar
[44]
CEAS. (2015). Proceedings of the 5th European air & space conference. 5th CEAS Conf. Delft. https://aerospace-europe.eu/media/books/BoA_CEAS-2015.pdf
Google Scholar
[45]
Ross, M., Toohey, D., Peinemann, M., & Ross, P. (2009). Limits on the Space Launch Market Related to Stratospheric Ozone Depletion. Astropolitics, 7(1), 50–82. https://doi.org/10.1080/ 14777620902768867
DOI: 10.1080/14777620902768867
Google Scholar
[46]
BEKKI, S., CARIOLLE, D., MURRAY, N., TOUMI, R., BECK, J., LIPS, T., & AUSTIN, J. (2017). Impacts of space vehicles' launch & re-entry on the ozone layer and climate (E.-C. S. E. N. Clean Sp. Ind. Days, Ed.). https://indico.esa.int/indico/event/181/session/ 3/contribution/72
Google Scholar
[47]
Sirieys, E., Gentgen, C., Milton, J., & de Weck, O. (2022). Space sustainability isn't just about space debris: On the atmospheric impact of space launches. MIT Science Policy Review, 3, 143–151
DOI: 10.38105/spr.whfig18hta
Google Scholar
[48]
Chanoine, A. (2017). Environmental impacts of launchers and space missions. Clean Space Industrial Days, October 25th. https://indico.esa.int/event/181/contributions/1443/.
Google Scholar
[49]
OECD Secretariat. (2020). Space Sustainability: The Economics of Space Debris in Perspective.
Google Scholar
[50]
ECSS. (2009). ECSS-M-ST-10 – Space Project Management, Project Planning and Implementation. https://www.skatelescope.org/public/2011-11-18_WBS-SOW_ Development_Reference_Documents/ECSS-M-ST-10C_Rev.1%286 March2009%29.pdf
Google Scholar
[51]
Neto, O. de O. B. (2023). Revisiting the Delimitation of Outer Space in Light of the Long-Term Sustainability of Space Activities. Air and Space Law, 48(Special), 93–112
DOI: 10.54648/AILA2023033
Google Scholar
[52]
Schrogl, K.-U. (2020). Handbook of Space Security.
Google Scholar
[53]
Anderson, K., Ryan, B., Sonntag, W., Kavvada, A., & Friedl, L. (2017). Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-Spatial Information Science, 20(2), 77–96
DOI: 10.1080/10095020.2017.1333230
Google Scholar
[54]
Belward, A. S., & Skøien, J. O. (2015). Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 115–128. https://doi.org/10.1016/J.ISPRSJPRS. 2014.03.009
DOI: 10.1016/j.isprsjprs.2014.03.009
Google Scholar
[55]
Pöllänenv, E., Osika, W., Bojner Horwitz, E., & Wamsler, C. (2023). Education for Sustainability: Understanding Processes of Change across Individual, Collective, and System Levels. Challenges, 14(1), 5
DOI: 10.3390/challe14010005
Google Scholar
[56]
Spector, S., Higham, J. E. S., & Doering, A. (2017). Beyond the biosphere: tourism, outer space, and sustainability. Tourism Recreation Research, 42(3), 273–283
DOI: 10.1080/02508281.2017.1286062
Google Scholar
[57]
Deplano, R. (2021). THE ARTEMIS ACCORDS: EVOLUTION OR REVOLUTION in INTERNATIONAL SPACE LAW? International and Comparative Law Quarterly, 70(3), 799–819
DOI: 10.1017/S0020589321000142
Google Scholar
[58]
Castiglioni, A. G., Bigdeli, M. B., Palamini, C., Martinoia, D., Frezza, L., Matassini, B., Pizzocri, D., & Massari, M. (2015). Spaceship Earth. Space-driven technologies and systems for sustainability on ground. Acta Astronaut., 195–205.
DOI: 10.1016/j.actaastro.2015.05.029
Google Scholar
[59]
Krag, H., Lemmens, S., & Letizia, F. ,. (2017). Space Traffic Management through the Control of the Space environment's Capacity. 1st IAA Conference on Space Situational Awareness (ICSSA). Orlando, FL, USA.
Google Scholar
[60]
Klinkrad, H., Wegener, P., Bendisch, J., & Bunte, K. (2006). Modeling of Collision Flux for the Current Space Debris Environment. Space Debris, 115–142
DOI: 10.1007/3-540-37674-7_4
Google Scholar
[61]
Oltrogge, D. L., & Christensen, I. A. (2020). Space governance in the new space era. Journal of Space Safety Engineering, 7(3), 432–438
DOI: 10.1016/j.jsse.2020.06.003
Google Scholar
[62]
Anselmo, L., & Pardini, C. (2015). Compliance of the Italian satellites in low Earth orbit with the end-of-life disposal guidelines for Space Debris Mitigation and ranking of their long-term criticality for the environment. Acta Astronautica, 114, 93–100. https://doi.org/10.1016/ J.ACTAASTRO.2015.04.024
DOI: 10.1016/j.actaastro.2015.04.024
Google Scholar
[63]
Martin-Lawson, D., Paladini, S., Saha, K., & Yerushalmi, E. (2024). The cost of (Un)regulation: Shrinking Earth's orbits and the need for sustainable space governance. Journal of Environmental Management, 349, 119382
DOI: 10.1016/J.JENVMAN.2023.119382
Google Scholar
[64]
Sharma, K. K., Ghazali, S., Dalai, A., Saraswat, K., Mondal, S., Devalla, V., Joshi, S., & Rawat, P. (2018). Space debris reduction using eddy currents. 2018 Atmospheric Flight Mechanics Conference, January 2021
DOI: 10.2514/6.2018-3161
Google Scholar
[65]
U.S. Congress, Office of Technology Assessment, Orbiting Debris: A Space Environmental Problem-Background Paper, OTA-BP-ISC-72 (Washington, DC: U.S. Government Printing Office, September 1990).
Google Scholar
[66]
Balkema, A. J., Preisig, H. A., Otterpohl, R., & Lambert, A. J. D. (2003). Augmenting design with sustainability. Computer Aided Chemical Engineering, 15(C), 714–719
DOI: 10.1016/S1570-7946(03)80390-5
Google Scholar
[67]
Sylvestrea, H., & Ramakrishna Parama, V. R. (2017). Space debris: Reasons, types, impacts and management. Indian Journal of Radio and Space Physics, 46(1), 20–26.
Google Scholar