Dimension of Space: A Missing Link for Comprehensive Assessment of Product Sustainability

Article Preview

Abstract:

The study emphasizes the interconnectedness of a healthy economy, equitable societies, environmental well-being, and the path towards sustainable development. While current sustainability assessments acknowledge ecological, social, and economic factors, they frequently miss the mark on space pollution and its related metrics. Space sustainability, envisioned as the peaceful and equitable access to and utilization of outer space, and is portrayed as a multi-faceted concept requiring consideration of various aspects to ensure responsible space conduct. Specifically, space debris in Earth's orbit poses a formidable challenge to achieving sustainable space activities, yet this critical dimension continues to be understudied within the broader sustainability framework. The study aims to fill this research gap by identifying Key Performance Indicators (KPIs) for evaluating product sustainability, emphasizing a comprehensive understanding across terrestrial and extraterrestrial dimensions. It advocates for integrating space-related factors into sustainability assessments, emphasizing the need for a holistic approach that spans both Earth's immediate environment and the broader universe. The proposed space-related KPIs aim to address unique challenges and opportunities associated with space activities. This study pushes the boundaries of sustainability, calling for a comprehensive approach that connects earthly principles with the vast reality of space. It emphasizes the need for responsible practices both on Earth and in orbit, highlighting the growing risks associated with space debris and advocating for effective space management strategies. For businesses, the study signifies a paradigm shift – challenging them to consider the impact of their activities on space sustainability by integrating the 'Dimension of Space' and its associated indicators into their sustainability frameworks. This holistic approach is critical for cultivating responsible space practices, ensuring the long-term viability of space exploration, and safeguarding our shared orbital commons for future generations. Keywords: Space Industry, Sustainable Practices, Space Product Eco-labeling and Certification, Mitigation Strategies, Pollution Reduction, Resource Recovery and Recycling.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 26)

Pages:

29-43

Citation:

Online since:

August 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Raghunath, K. (2022). The Business and Economics of Space Sustainability. In ASCEND 2022. American Institute of Aeronautics and Astronautics. https://doi.org/

DOI: 10.2514/6.2022-4225

Google Scholar

[2] Brundtland, G. H. (1987). Report of the World Commission on Environment and Development: Our Common Future. UN, 14(23), 5135–5140

DOI: 10.1021/bi00694a018

Google Scholar

[3] Schrogl, K.-U., Mathieu, C., & Lukaszczyk, A. (2009). Threats, Risks and Sustainability — Answers by Space. 2

DOI: 10.1007/978-3-211-87450-9

Google Scholar

[4] Gupta, B., & Sinha Roy, R. (2018). Sustainability of Outer Space: Facing the Challenge of Space Debris. Environmental Policy and Law, 48(1), 3–7

DOI: 10.3233/EPL-180042

Google Scholar

[5] COPUOS, U. (2018). Committee on the Peaceful Uses of Outer Space Guidelines for the Long-term Sustainability of Outer Space Activities. https://www.unoosa.org/res/oosadoc/data/ documents/2018/aac_1052018crp/aac_1052018crp_20_0_html/AC105_2018_CRP20E.pdf

DOI: 10.18356/9789210021852

Google Scholar

[6] Toivonen, A. (2022). Sustainability dimensions in space tourism: the case of Finland. Journal of Sustainable Tourism, 30(9), 2223–2239

DOI: 10.1080/09669582.2020.1783276

Google Scholar

[7] Klinger, J. M. (2021). Environmental Geopolitics and Outer Space. Geopolitics, 26(3), 666–703

DOI: 10.1080/14650045.2019.1590340

Google Scholar

[8] Aganaba-Jeanty, T. (2016). Space Sustainability and the Freedom of Outer Space. Astropolitics, 14(1), 1–19

DOI: 10.1080/14777622.2016.1148463

Google Scholar

[9] ASD-Eurospace. (2017). Space Sector Contribution to the EC REACH Review. https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf.

Google Scholar

[10] United Nations. (2021). A/RES/76/3 - The "Space2030" Agenda: space as a driver of sustainable development. General Assembly 76th Session 21st Plenary Meeting Agenda Item 30 (Space as a Driver of Sustainable Development). https://www.unoosa.org/oosa/oosadoc/ data/resolutions/2021/general_assembly_76th_session/ares763.html

DOI: 10.18356/9789210024457

Google Scholar

[11] Guo, H., Dou, C., Chen, H., Liu, J., Fu, B., Li, X., Zou, Z., & Liang, D. (2023). SDGSAT-1: the world's first scientific satellite for sustainable development goals. Science Bulletin, 68(1), 34–38

DOI: 10.1016/j.scib.2022.12.014

Google Scholar

[12] Miraux, L., Wilson, A. R., & Dominguez Calabuig, G. J. (2022). Environmental sustainability of future proposed space activities. Acta Astronautica, 200, 329–346

DOI: 10.1016/J.ACTAASTRO.2022.07.034

Google Scholar

[13] Dongfang, W., Baojun, P., & Weike, X. (2017). GEO space debris environment determination in the earth fixed coordinate system. 7th European Conference on Space Debris. ESA Space Debris Office, Darmstadt, ESOC. http://spacedebris2017.sdo.esoc.esa.int

DOI: 10.1016/j.actaastro.2016.10.017

Google Scholar

[14] Newman, C. J., & Williamson, M. (2018). Space Sustainability: Reframing the Debate. Space Policy, 46, 30–37

DOI: 10.1016/j.spacepol.2018.03.001

Google Scholar

[15] Kumari, A. (2019). Space Debris: An environmental problem for space missions. https://www.researchgate.net/publication/337292745

Google Scholar

[16] Prof. Dr. Ram Jakhu. (2011). Towards Long-term Sustainability of Space Activities: Overcoming the Challenges of Space Debris.

Google Scholar

[17] ESA. (2020). European Space Agency Space Debris Office. https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf

DOI: 10.52843/cassyni.d0d36c

Google Scholar

[18] Lewis, H.G., & Marsh, N. (2021). Deep Time Analysis of Space Debris and Space. April, 20–23.

Google Scholar

[19] Popova, R., & Schaus, V. (2018). The Legal Framework for Space Debris Remediation as a Tool for Sustainability in Outer Space. Aerospace, 5 (2), 55. https://doi.org/10.3390/ aerospace5020055

DOI: 10.3390/aerospace5020055

Google Scholar

[20] Colombo, C., Letizia, F., Trisolini, M., Lewis, H. G., Chanoine, A., DuvernoisPierre-Alexis, Austin, J., & Lemmens, S. (2017). Life Cycle Assessment Indicator for Space Debris. 7th European Conference on Space Debris, June. http://hdl.handle.net/11311/1047157

Google Scholar

[21] Santis, M. DE. (2018). Life Cycle Assessment of Ground Segment in space sector · Indico at ESA / ESTEC. In E. N. ESA - Clean Space (Ed.), Clean Space Industrial Days (23-25 October 2018): https://indico.esa.int/event/234/contributions/3741/

Google Scholar

[22] De Santis, M., Urbano, G., Blengini, G. A., Zah, R., Gmuender, S., & Ciroth, A. (2013). Environmental impact assessment of space sector: LCA results and applied methodology. Proceedings of the 4th CEAS Conference in Linköping, 2013, 364–373. https://www.dora.lib4ri.ch/empa/islandora/object/empa%3A9414/

Google Scholar

[23] Kessler, D., Johnson, N., Liou, J.-C., & Matney, M. (2010). The Kessler Syndrome: Implications to Future Space operations. Advances in the Astronautical Sciences, 137.

Google Scholar

[24] Gallice, A., Maury, T., & del Olmo, E. (2018). Environmental Impact of the Exploitation of the Ariane 6 Launcher System (Clean Sp. Ind. Days, Ed.). ESA - Clean Space, ESTEC, Noordwijk,. https://indico.esa.int/event/234/contributions/3918/attachments/3115/4259/2018CSID_AGallice_EnvironmentalLifeCycleImpactAnalysisOfA6ExploitationPhase.pdf

Google Scholar

[25] Geerken, T., Vercalsteren, A., & Boonen, K. (2018). USER EXPERIENCE OF THE ESA LCA HANDBOOK AND DATABASE. Clean Space Industry Days-23-25 October 2018. https://indico.esa.int/event/234/contributions/4023/attachments/3020/3643/CSID_2018_User_experience_of_the_ESA_LCA_Handbook_and_database_Theo_Geerken.pdf

Google Scholar

[26] OECD. (2019). The Space Economy in Figures. The Space Economy in Figures: How Space Contributes to the Global Economy

DOI: 10.1787/C5996201-EN

Google Scholar

[27] Maury, T., Loubet, P., Serrano, S. M., Gallice, A., & Sonnemann, G. (2020). Application of environmental life cycle assessment (LCA) within the space sector: A state of the art. Acta Astronautica, 170(July 2019), 122–135

DOI: 10.1016/j.actaastro.2020.01.035

Google Scholar

[28] Maury, T., Loubet, P., Ouziel, J., Saint-Amand, M., Dariol, L., & Sonnemann, G. (2017). Towards the integration of orbital space use in Life Cycle Impact Assessment. Science of The Total Environment, 595, 642–650

DOI: 10.1016/J.SCITOTENV.2017.04.008

Google Scholar

[29] Maury, T., Loubet, P., Trisolini, M., Gallice, A., Sonnemann, G., & Colombo, C. (2019). Assessing the impact of space debris on orbital resource in life cycle assessment: A proposed method and case study. Science of the Total Environment, 667, 780–791

DOI: 10.1016/j.scitotenv.2019.02.438

Google Scholar

[30] ISO/TR. (2002). ISO/TR 14062: 2002, Environmental Management — Integrating Environmental aspects into product design and development. https://www.iso.org/obp/ui#iso:std:iso:tr:14062:ed-1:v1:en

DOI: 10.31030/9373781

Google Scholar

[31] Ko, N., Betten, T., Schestak, I., & Gantner, J. (2017). LCA in space − current status and future development. Matériaux & Techniques, 105(5–6), 507

DOI: 10.1051/MATTECH/2018003

Google Scholar

[32] Chanoine, A., Duvernois, P., Colombo, C., Trisolini, M., Letizia, F., Lewis, H., Austin, J., & Lemmens, S. (2018). Design indicator for space debris. https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=Design+Indicator+for+Space+Debris+2018+Chanoine%2C+A.%2C+Duvernois&btnG=

DOI: 10.1201/b22139-5

Google Scholar

[33] Kato, A., Lazare, B., Oltrogge, D., & Stokes, H. (2013). Standardization By Iso To Ensure the Sustainability of Space Activities. 6th European Conference on Space Debris, 2013(April), 22–25.

Google Scholar

[34] Gohardani, A. S., Stanojev, J., Demairé, A., Anflo, K., Persson, M., Wingborg, N., & Nilsson, C. (2014). Green space propulsion: Opportunities and prospects. Progress in Aerospace Sciences, 71, 128–149

DOI: 10.1016/J.PAEROSCI.2014.08.001

Google Scholar

[35] ESA Clean Space. (2019). The Clean Space Blog. The Clean Space Blog. http://blogs.esa.int/cleanspace/

Google Scholar

[36] CEAS. (2013). 4th CEAS Conf. Linköping. Proceedings of 4th European Air & Space Conference. http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A657370&dswid=-9030

Google Scholar

[37] Durrieu, S., & Nelson, R. F. (2013). Earth observation from space - The issue of environmental sustainability. Space Policy, 29(4), 238–250

DOI: 10.1016/j.spacepol.2013.07.003

Google Scholar

[38] Buchs, R., & Bernauer, T. (2023). Market-based instruments to incentivize more sustainable practices in outer space. Current Opinion in Environmental Sustainability, 60, 101247

DOI: 10.1016/J.COSUST.2022.101247

Google Scholar

[39] Bongers, A., & Torres, J. L. (2023). Orbital debris and the market for satellites. Ecological Economics, 209

DOI: 10.1016/j.ecolecon.2023.107831

Google Scholar

[40] ESA LCA working group. (2016). Space system life cycle assessment (LCA) guidelines. https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=ESA+LCA+Working+Group%2C+Space+System+Life+Cycle+Assessment+%28LCA%29+Guidelines%2C+%282016%29.&btnG=#d=gs_cit&t=1705942969255&u=%2Fscholar%3Fq%3Dinfo%3ABK-cWcsTIdMJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den

DOI: 10.1007/bf02978930

Google Scholar

[41] Weeden, B. (2009, March). Space Sustainability: To Preserve and to Protect. SatMagazine. http://www.satmagazine.com/story.php?number=1415465455

Google Scholar

[42] Anselmo, L., & Pardini, C. (2017). AN INDEX FOR RANKING ACTIVE DEBRIS REMOVAL TARGETS IN LEO. In T., S. F. (Eds.) In: Flohrer (Ed.), 7th European Conference on Space Debris. ESA Space Debris Office, Darmstadt - ESOC, p.18–21. http://spacedebris2017.sdo.esoc.esa.int

DOI: 10.52843/cassyni.d0d36c

Google Scholar

[43] Bastida Virgili, B., Dolado, J. C., Lewis, H. G., Radtke, J., Krag, H., Revelin, B., Cazaux, C., Colombo, C., Crowther, R., & Metz, M. (2016). Risk to space sustainability from large constellations of satellites. Acta Astronautica, 126(2016), 154–162

DOI: 10.1016/j.actaastro.2016.03.034

Google Scholar

[44] CEAS. (2015). Proceedings of the 5th European air & space conference. 5th CEAS Conf. Delft. https://aerospace-europe.eu/media/books/BoA_CEAS-2015.pdf

Google Scholar

[45] Ross, M., Toohey, D., Peinemann, M., & Ross, P. (2009). Limits on the Space Launch Market Related to Stratospheric Ozone Depletion. Astropolitics, 7(1), 50–82. https://doi.org/10.1080/ 14777620902768867

DOI: 10.1080/14777620902768867

Google Scholar

[46] BEKKI, S., CARIOLLE, D., MURRAY, N., TOUMI, R., BECK, J., LIPS, T., & AUSTIN, J. (2017). Impacts of space vehicles' launch & re-entry on the ozone layer and climate (E.-C. S. E. N. Clean Sp. Ind. Days, Ed.). https://indico.esa.int/indico/event/181/session/ 3/contribution/72

Google Scholar

[47] Sirieys, E., Gentgen, C., Milton, J., & de Weck, O. (2022). Space sustainability isn't just about space debris: On the atmospheric impact of space launches. MIT Science Policy Review, 3, 143–151

DOI: 10.38105/spr.whfig18hta

Google Scholar

[48] Chanoine, A. (2017). Environmental impacts of launchers and space missions. Clean Space Industrial Days, October 25th. https://indico.esa.int/event/181/contributions/1443/.

Google Scholar

[49] OECD Secretariat. (2020). Space Sustainability: The Economics of Space Debris in Perspective.

Google Scholar

[50] ECSS. (2009). ECSS-M-ST-10 – Space Project Management, Project Planning and Implementation. https://www.skatelescope.org/public/2011-11-18_WBS-SOW_ Development_Reference_Documents/ECSS-M-ST-10C_Rev.1%286 March2009%29.pdf

Google Scholar

[51] Neto, O. de O. B. (2023). Revisiting the Delimitation of Outer Space in Light of the Long-Term Sustainability of Space Activities. Air and Space Law, 48(Special), 93–112

DOI: 10.54648/AILA2023033

Google Scholar

[52] Schrogl, K.-U. (2020). Handbook of Space Security.

Google Scholar

[53] Anderson, K., Ryan, B., Sonntag, W., Kavvada, A., & Friedl, L. (2017). Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-Spatial Information Science, 20(2), 77–96

DOI: 10.1080/10095020.2017.1333230

Google Scholar

[54] Belward, A. S., & Skøien, J. O. (2015). Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 115–128. https://doi.org/10.1016/J.ISPRSJPRS. 2014.03.009

DOI: 10.1016/j.isprsjprs.2014.03.009

Google Scholar

[55] Pöllänenv, E., Osika, W., Bojner Horwitz, E., & Wamsler, C. (2023). Education for Sustainability: Understanding Processes of Change across Individual, Collective, and System Levels. Challenges, 14(1), 5

DOI: 10.3390/challe14010005

Google Scholar

[56] Spector, S., Higham, J. E. S., & Doering, A. (2017). Beyond the biosphere: tourism, outer space, and sustainability. Tourism Recreation Research, 42(3), 273–283

DOI: 10.1080/02508281.2017.1286062

Google Scholar

[57] Deplano, R. (2021). THE ARTEMIS ACCORDS: EVOLUTION OR REVOLUTION in INTERNATIONAL SPACE LAW? International and Comparative Law Quarterly, 70(3), 799–819

DOI: 10.1017/S0020589321000142

Google Scholar

[58] Castiglioni, A. G., Bigdeli, M. B., Palamini, C., Martinoia, D., Frezza, L., Matassini, B., Pizzocri, D., & Massari, M. (2015). Spaceship Earth. Space-driven technologies and systems for sustainability on ground. Acta Astronaut., 195–205.

DOI: 10.1016/j.actaastro.2015.05.029

Google Scholar

[59] Krag, H., Lemmens, S., & Letizia, F. ,. (2017). Space Traffic Management through the Control of the Space environment's Capacity. 1st IAA Conference on Space Situational Awareness (ICSSA). Orlando, FL, USA.

Google Scholar

[60] Klinkrad, H., Wegener, P., Bendisch, J., & Bunte, K. (2006). Modeling of Collision Flux for the Current Space Debris Environment. Space Debris, 115–142

DOI: 10.1007/3-540-37674-7_4

Google Scholar

[61] Oltrogge, D. L., & Christensen, I. A. (2020). Space governance in the new space era. Journal of Space Safety Engineering, 7(3), 432–438

DOI: 10.1016/j.jsse.2020.06.003

Google Scholar

[62] Anselmo, L., & Pardini, C. (2015). Compliance of the Italian satellites in low Earth orbit with the end-of-life disposal guidelines for Space Debris Mitigation and ranking of their long-term criticality for the environment. Acta Astronautica, 114, 93–100. https://doi.org/10.1016/ J.ACTAASTRO.2015.04.024

DOI: 10.1016/j.actaastro.2015.04.024

Google Scholar

[63] Martin-Lawson, D., Paladini, S., Saha, K., & Yerushalmi, E. (2024). The cost of (Un)regulation: Shrinking Earth's orbits and the need for sustainable space governance. Journal of Environmental Management, 349, 119382

DOI: 10.1016/J.JENVMAN.2023.119382

Google Scholar

[64] Sharma, K. K., Ghazali, S., Dalai, A., Saraswat, K., Mondal, S., Devalla, V., Joshi, S., & Rawat, P. (2018). Space debris reduction using eddy currents. 2018 Atmospheric Flight Mechanics Conference, January 2021

DOI: 10.2514/6.2018-3161

Google Scholar

[65] U.S. Congress, Office of Technology Assessment, Orbiting Debris: A Space Environmental Problem-Background Paper, OTA-BP-ISC-72 (Washington, DC: U.S. Government Printing Office, September 1990).

Google Scholar

[66] Balkema, A. J., Preisig, H. A., Otterpohl, R., & Lambert, A. J. D. (2003). Augmenting design with sustainability. Computer Aided Chemical Engineering, 15(C), 714–719

DOI: 10.1016/S1570-7946(03)80390-5

Google Scholar

[67] Sylvestrea, H., & Ramakrishna Parama, V. R. (2017). Space debris: Reasons, types, impacts and management. Indian Journal of Radio and Space Physics, 46(1), 20–26.

Google Scholar