[1]
National Aeronautics and Space Administration 2017, accessed on August 4, 2021, Information on https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_cubesat_101_508.pdf.
Google Scholar
[2]
S.-K. Pang and B. Twiggs, Citizen Satellites, Sci. Am. (2011) 48–53.
Google Scholar
[3]
J. Puig-Sauri and R. J. Twiggs, CUBESAT: Design Specifications Document, Revision III, California Polytechnic State University and Stanford University's Space Systems Development Laboratory (2005).
Google Scholar
[4]
NAS-National Academies of Sciences, Engineering, and Medicine, Achieving Science with CubeSats: Thinking Inside the Box, The National Academies Press, Washington, DC, USA (2016).
DOI: 10.17226/23503
Google Scholar
[5]
E. L. Shkolnik, On the verge of an astronomy CubeSat revolution, Nat. Astron. 2 (5) (2018) 374–378.
DOI: 10.1038/s41550-018-0438-8
Google Scholar
[6]
M. A. Viscio, N. Viola, S. Corpino, et al., Interplanetary CubeSats system for space weather evaluations and technology demonstration, Acta. Astronaut. 104 (2) (2014) 516–525.
DOI: 10.1016/j.actaastro.2014.06.005
Google Scholar
[7]
S. Asmar and S. Matousek, Mars Cube One (MarCO) Shifting the Paradigm in Relay Deep Space Operation, 14th International Conference on Space Operations (2016).
DOI: 10.2514/6.2016-2483
Google Scholar
[8]
Philippine Space Agency 2019, accessed on August 1, 2021, Information on https://en.wikipedia.org/wiki/Philippine_Space_Agency.
Google Scholar
[9]
Agila-1 1987, Accessed on August 3,2021, Information on https://en.wikipedia.org/wiki/Agila-1.
Google Scholar
[10]
ABS-3 (Agila-2) 1997, Accessed on August 3, 2021, Information on https://en.wikipedia.org/wiki/ABS-3.
Google Scholar
[11]
Diwata-1 2016, Accessed on August 3, 2021, Information on https://en.wikipedia.org/wiki/Diwata-1.
Google Scholar
[12]
N. Zosimovych and Z. Chen, 3D printing CubeSat: a low-cost mode of space exploration, Aeron Aero 2(5) (2018) 320–324.
DOI: 10.15406/aaoaj.2018.02.00066
Google Scholar
[13]
M. Everett, A. Flores-Abad, K.M. Billah, et al., Orbital Factory II: a 3D printer CubeSat with self-repairing purposes, AIAA SPACE and Astronautics Forum and Exposition (2018).
Google Scholar
[14]
D. Fluitt, Feasibility Study Into the Use of 3D Printed Materials in CubeSat Flight Missions, California Polytechnic State University, 2012, DOI: https://doi.org/10.15368/theses.2012.122.
DOI: 10.15368/theses.2012.122
Google Scholar
[15]
H. Yong, C.L. Ming, J. Mazumder, et al., Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J. Manuf. Sci. Eng. 137(1) (2015) 014001.
Google Scholar
[16]
F. Ning, W. Cong, Y. Hu, and H. Wang, Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties, J. Compos. Mater. 51(4) (2017) 451–462.
DOI: 10.1177/0021998316646169
Google Scholar
[17]
G. Zhao, G. Ma, W. Xiao, Feature-based five-axis path planning method for robotic additive manufacturing, Proceedings of the IMechE, Part B: Journal of Engineering Manufacture 233(5) (2019) 1412–1424.
DOI: 10.1177/0954405417752508
Google Scholar
[18]
Additive manufacturing—general principles—part 2: overview of process categories and feedstock, 2015, Information on ISO 17296-2:(2015).
Google Scholar
[19]
J.R. Dizon, A. Espera, Q. Chen, R. Advincula, Mechanical characterization of 3D- printed polymers, Addit. Manuf. 20 (2018) 44–67.
DOI: 10.1016/j.addma.2017.12.002
Google Scholar
[20]
3D PRINTING.COM 2021, Accessed on August 5, 2021, Information on https://3dprinting.com/what-is-3d-printing/.
Google Scholar
[21]
Newsbytes.ph 2019, Accessed on July 10, 2021, Information on http://newsbytes.ph/2019/03/28/dost-inaugurates-phs-first-3d-printing-lab-in-bataan/.
Google Scholar
[22]
A. D. Valino, J.R. C. Dizon, A. H. Espera, Q. Chen, J. Messman, and R. C. Advincula, Advances in 3D printing of thermoplastic polymer composites and nanocomposites, Prog. Polym. Sci., 98 (2019),.
DOI: 10.1016/j.progpolymsci.2019.101162
Google Scholar
[23]
A. H. Espera, J. R. Dizon, Q. Chen, and R. Advincula, 3D-printing and advanced manufacturing for electronics,, Prog. Addit. Manuf., (2019),.
DOI: 10.1007/s40964-019-00077-7
Google Scholar
[24]
R. Advincula, J. R. Dizon, Q. Chen, I. Niu, J. Chung, L. Kilpatrick, Additive manufacturing for COVID-19: devices, materials, prospects, and challenges, MRS Commun., 10(3) (2020) 413–427.
DOI: 10.1557/mrc.2020.57
Google Scholar
[25]
J. R. Dizon, C.C. Gache, H. M. Cascolan, L. Cancino, R. Advincula, Post-Processing of 3D-Printed Polymers, Technologies, 9(3) (2021) 61,.
DOI: 10.3390/technologies9030061
Google Scholar
[26]
J. R. Dizon, A. D. Valino, L. R. Souza, A. H. Espera, Q. Chen, and R. Advincula, 3D Printed Injection Molds using various 3D Printing Technologies, Mater. Sci. Forum, 1005 (2020) 150–156, 2020, doi: https://doi.org/10.4028/www.scientific.net/MSF.1005.150.
DOI: 10.4028/www.scientific.net/msf.1005.150
Google Scholar
[27]
Alen 2021, Accessed on August 6, 2021, Information on https://alen.space/basic-guide-nanosatellites/.
Google Scholar
[28]
W. Shiroma, L. Martin, J. Akagi, et al., CubeSats: A bright future for nanosatellites, Cent. Eur. J. Eng. 1(1) (2011) 9–15.
Google Scholar
[29]
T. Villela, C. Costa, A. Brandão, et al., Towards the thousandth CubeSat: A statistical overview, Int. J. Aerosp. (2019) 5063145.
Google Scholar
[30]
C. Nogales, B. Grim, M. Kamstra, et al., MakerSat-0: 3D-Printed Polymer Degradation First Data from Orbit, 32nd Annual AIAA/USU Conference on Small Satellites (2018) 1–6.
Google Scholar
[31]
Oropallo, W., Piegl, L.A., Ten challenges in 3D printing. Engineering with Computers 32 (2016) 135–148. https://doi.org/10.1007/s00366-015-0407-0.
DOI: 10.1007/s00366-015-0407-0
Google Scholar
[32]
Z. Chen and N. Zosimovych, Mission capability assessment of 3D printing CubeSats, IOP Conf. Series: Materials Science and Engineering 608 (2019).
DOI: 10.1088/1757-899x/608/1/012025
Google Scholar
[33]
PHL MICCROSAT 2018, Accessed on August 6, 2021, Information on https://phl-microsat.upd.edu.ph/stamina#:~:text=Under%20STAMINA4Space%20Program%20is%20the,for%20space%20science%20and%20engineering.
Google Scholar
[34]
SteP-UP Project 2021, Accessed on August 5, 2021, Information on https://stamina4space.upd.edu.ph/upcoming-satellites/maya-3and4/#:~:text=Maya%2D3%20and%20Maya%2D4,domestic%20capabilities%20for%20satellite%20development.
Google Scholar
[35]
Department of Science and Technology-Advanced Science and Technology Institute 2021, Accessed on August 7, 2021, Information on https://asti.dost.gov.ph/communications/second-ph-cubesat-maya-2-launched-to-space-station/.
Google Scholar
[36]
L. Resurreccion, Maya-2, PHL's 2nd cube satellite, launched | Lyn Resurreccion". BusinessMirror, (22 February 2021).
Google Scholar
[37]
PHL MICCROSAT 2018, Accessed on August 8, 2021, Information on https://phl-microsat.upd.edu.ph/stamina#:~:text=Under%20STAMINA4Space%20Program%20is%20the,for%20space%20science%20and%20engineering.
Google Scholar
[38]
MatWeb-Material Property Data 2021, Accessed on August 10, 2021, Information on www.matweb.com.
Google Scholar
[39]
M. Herrera, Feasibility of 3D printed materials into space use, Accessed on August 10, 2021, Information on https://grabcad.com/challenges/the-cubesat-challenge.
Google Scholar
[40]
A. Ampatzoglou and V. Kostopoulos, Design, analysis, optimization, manufacturing, and testing of a 2U CubeSat, Int. J. Aerosp. (2018) 9724263.
Google Scholar
[41]
ISO/ASTM,¨ISO,¨ISO/ASTM, 2016. Information on https://www.iso.org/obp/ui/#iso:std:iso-astm:52915:ed-2:v1:en.
DOI: 10.31030/3166181
Google Scholar
[42]
ASTM F2792. Standard Terminology for Additive Manufacturing Technologies (No. F2792-12a). ASTM Int 2013:2–4.
Google Scholar
[43]
P.C. Sai PC and S. Yeole, Fused deposition modeling – Insights, Int. Conf. Adv. Des. Manuf. (2014) 1345–1350.
Google Scholar
[44]
A.C. De Leon, Q. Chen, N.B. Palaganas, et al., High performance polymer nanocomposites for additive manufacturing applications, Reactive and Functional Polymers 103 (2016) 141.
DOI: 10.1016/j.reactfunctpolym.2016.04.010
Google Scholar
[45]
A.H. Espera, J.R. Dizon, Q. Chen, and R.C. Advincula, 3D-printing and advanced manufacturing for electronics. Prog. Addit. Manuf. (2019) https://doi.org/1007/s40964-019-00077-7.
DOI: 10.1007/s40964-019-00077-7
Google Scholar
[46]
J.-Y. Lee, W.S. Tan, J. An, et al., The potential to enhance membrane module design with 3D printing technology, J. Membr. Sci. 499 (2016) 480–490.
Google Scholar
[47]
Z.-X. Low, Y.-T. Chua, B.-M. Ray, et al., Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, J. of Membr. Sci. 523 (2017) 596–613.
DOI: 10.1016/j.memsci.2016.10.006
Google Scholar
[48]
M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies, Int. J. Adv. Manuf. Technol. 67 (2013) 1721–1754.
DOI: 10.1007/s00170-012-4605-2
Google Scholar
[49]
S. Crump, Fast, precise, safe prototype with FDM, ASME PED. 50 (1991) 53–60.
Google Scholar
[50]
INTAMSYS 2017, Accessed on August 11, 2021, Information on https://www.intamsys.com/intamsys-launches-peek-3d-printer/.
Google Scholar
[51]
A. Sood, R. Ohdar, S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts, Mater. Des. 31(2010) 287–295.
DOI: 10.1016/j.matdes.2009.06.016
Google Scholar
[52]
A.R. Jones, A. Griffiths, M.J. Joyce, et al., On the design of a remotely-deployed detection system for reactor assessment at Fukushima Daiichi, Nuclear Science Symposium Medical Imaging Conference and Room Temperature Semiconductor Detector Workshop, Strasbourg, (2016).
DOI: 10.1109/nssmic.2016.8069713
Google Scholar
[53]
K. Gillen, J. Wallace, and R. Clough, Dose-rate dependence on the radiation induced discoloration of polystyrene, Radiat. Phys. Chem. 41(2) (1993) 101.
DOI: 10.1016/0969-806x(93)90046-w
Google Scholar
[54]
S. Shaffer, K. Yang, J. Vargas, et al., On reducing anisotropy in 3D printed polymers via ionizing radiation, Polymer, 55(23) (2014) 5969.
DOI: 10.1016/j.polymer.2014.07.054
Google Scholar
[55]
L. Kuentz, A. Salem, M. Singh, et al., Additive manufacturing and characterization of Polylactic Acid (PLA) composites containing metal reinforcements, https://ntrs.nasa.gov/archive/nasa/casi.ntrs. nasa.gov/20160010284.pdf.
Google Scholar
[56]
E. G. Gordeev, A. S. Galushko and V. P. Ananiko, Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling, PLOS ONE, 13 (2018) 1.
DOI: 10.1371/journal.pone.0198370
Google Scholar
[57]
PHL MICCROSAT 2018, Accessed on August 11, 2021, Information on https://phl-microsat.upd.edu.ph/stamina.
Google Scholar