Fracture Toughness Investigation of AL6082-T651 Alloy under Corrosive Environmental Conditions

Article Preview

Abstract:

The crack initiation and propagation in an aluminium alloy in a corrosive environment are complex because of the loading parameters and material properties, which may result in a sudden failure in real-time applications. This paper investigates the fracture toughness of aluminium alloy under varying environmental and corrosion conditions. The main objective of the work is to link the interdependencies of humidity and temperature for an AL6082-T651 alloy in a corrosive environment. This study investigates AL6082-T651alloy's fracture behaviour and mechanism through microstructure and fractographic studies. The results show that a non-corroded sample, at room conditions, provided more load-carrying capacity than a corroded sample. Additionally, an increase in temperature improves fracture toughness, while an increase in humidity results in a decrease in fracture toughness.

You have full access to the following eBook

Info:

Periodical:

Pages:

3-14

Citation:

Online since:

April 2024

Export:

Share:

Citation:

* - Corresponding Author

[1] Anderson TL. Fracture mechanics – fundamentals and applications. 3rd edn. Boca Raton: CRC Press; 2005.

Google Scholar

[2] Kamei K, KM. Investigating the Structural Dynamics and Crack Propagation Behaviour under Uniform and Non-Uniform Temperature Conditions. Materials (Basel). 2021; 14(22): 7071. Available at: DOI:.

DOI: 10.3390/ma14227071

Google Scholar

[3] Raviraj MS, Sharanaprabhu CM, Mohankumar GC. Experimental investigation of effect of specimen thickness on fracture toughness of Al-TiC composites. Frattura ed Integrita Strutturale. 2016; 10(37): 360–368. Available at:

DOI: 10.3221/IGF-ESIS.37.47

Google Scholar

[4] Ibrahim M Alqahtani, Andrew Starr, Mohammad Khan. Experimental and theoretical aspects of crack assisted failures of metallic alloys in corrosive environments – A review. Materials Today: Proceedings. 2022; 66: 2530–2535

DOI: 10.1016/j.matpr.2022.07.075

Google Scholar

[5] Ibrahim M Alqahtani, Andrew Starr, Mohammad Khan. (2023) Coupled Effects of Temperature and Humidity on Fracture Toughness of Al–Mg–Si–Mn Alloy. Materials (Basel) 16:. Journal Pre-proof 20 https://doi.org/.

DOI: 10.3390/ma16114066

Google Scholar

[6] Cavalcante TRF, Pereira GS, Koga GY, Bolfarini C, Bose WW, Filho JAA. Fatigue crack propagation of aeronautic AA7050-T7451 and AA2050-T84 aluminum alloys in air and saline environments. International Journal of Fatigue. 2022; 154(106519)

DOI: 10.1016/j.ijfatigue.2021.106519

Google Scholar

[7] Muñoz AF, Buenhombre JLM, García-Diez AI, Fabal CC, Díaz JJG. Fatigue Study of the Pre-Corroded 6082-T6 Aluminum Alloy in Saline Atmosphere. Metals. 2020; 10: 1260. Available at:

DOI: 10.3390/met10091260

Google Scholar

[8] Ramakrishna Hegde, Sivaram NM, Ajaykumar BS, LJK. Evaluation of Heat Treatment Effect on Fracture Behavior of Aluminum Silicon Carbide Graphite Hybrid Composite. International Journal of Applied Engineering Research. 2017; 12(5): 605–610.

Google Scholar

[9] Zhu X, Jones JW, JEA. Effect of Frequency, Environment, and Temperature on Fatigue Behavior of E319 Cast-Aluminum Alloy: Small-Crack Propagation. Metallurgical and Materials Transactions A. 2008; 39A: 2666–2680. Available at:

DOI: 10.1007/s11661-008-9630-2

Google Scholar

[10] Correia JAFO, De Jesus AMP, Alves ASF, Lesiuk G, Tavares PJS, Moreira PMGP. Fatigue crack growth behaviour of the 6082-T6 aluminium using CT specimens with distinct notches. Procedia Structural Integrity. Elsevier B.V.; 2016; 2: 3272–3279. Available at:

DOI: 10.1016/j.prostr.2016.06.408

Google Scholar

[11] Saleemsab Doddamani, Mohamed Kaleemulla. Fracture toughness investigations of Al6061-Graphite particulate composite using compact specimens. Frattura ed Integrità Strutturale. 2017; 41: 484–490. Available at:

DOI: 10.3221/IGF-ESIS.41.60

Google Scholar

[12] Chen Yizhe, Shilong Zhao, Huijuan Ma, Hui Wang, Lin Hua SF. Analysis of Hydrogen Embrittlement on Aluminum Alloys for Vehicle-Mounted Hydrogen Storage Tanks: A Review. Metals. 2021; 11(8): 1303. Available at:

DOI: 10.3390/met11081303

Google Scholar

[13] Urbanczyk R, Peinecke K, Felderhoff M, Hauschild K, Kersten W, Peil DB. Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6. International Journal of Hydrogen Energy. 2014; 39(30): 17118–17128. DOI: https://doi.org/10.1016/j.ijhydene. 2014.08.101

DOI: 10.1016/j.ijhydene.2014.08.101

Google Scholar

[14] Albrecht J, Bernstein IM, AWT. Evidence for dislocation transport of hydrogen in aluminum. Metall. Mater. Trans. A. 1982; 13: 811–820.

DOI: 10.1007/bf02642394

Google Scholar

[15] Bochkaryova AV, Li YV, Barannikova SA, Zuev LB. The effect of hydrogen embrittlement on the mechanical properties of aluminum alloy. IOP Conference Series: Materials Science and Engineering. 2015; 71(1)

DOI: 10.1088/1757-899X/71/1/012057

Google Scholar

[16] Dwarakadasa ES, RA. Effect of hydrogen in aluminium and aluminium alloys: A review. Bull. Mater. Scl. 1990; 19(1): 103–114.

DOI: 10.1007/bf02744792

Google Scholar

[17] Safyari M, Hojo T, Moshtaghi M. Effect of environmental relative humidity on hydrogen-induced mechanical degradation in an Al–Zn–Mg–Cu alloy. Vacuum. Elsevier Ltd; 2021; 192(July): 110489

DOI: 10.1016/j.vacuum.2021.110489

Google Scholar

[18] Safyari M. Microstructure Effects on Hydrogen Trapping and Associated Mechanical Degradation in High Strength Aluminum Alloys. Tohoku University; 2022. DOI: http://hdl.handle.net/10097/00135880

Google Scholar

[19] Takeshi Ogawa, Shota Hasunuma, Toshiki Shirawachi, NF. Effect of Chemical Composition and Relative Humidity on the Humid Gas Stress Corrosion Cracking of Aluminum Alloys. Journal of High Pressure Institute of Japan. 2019; 57(1): 24–33.

DOI: 10.1299/jsmemecj.2018.j0450405

Google Scholar

[20] Scully JR, Young GA, Smith SW. Hydrogen embrittlement of aluminum and aluminum-based alloys. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, its Characterisation and Effects on Particular Alloy Classes. 2012; : 707–768.

DOI: 10.1533/9780857093899.3.707

Google Scholar

[21] Alrashed F, Asif M. Climatic Classifications of Saudi Arabia for Building Energy Modelling. Energy Procedia. Elsevier B.V.; 2015; 75: 1425–1430. Available at:

DOI: 10.1016/j.egypro.2015.07.245

Google Scholar

[22] Climatemp. Relative Humidity in Riyadh, Saudi Arabia. 2022. DOI: http://www.riyadh.climatemps.com/humidity.php

Google Scholar

[23] Amura M, Aiello L, Colavita M, De Paolis F, Bernabei M. Failure of a Helicopter Main Rotor Blade. Procedia Materials Science. Elsevier B.V.; 2014; 3: 726–731

DOI: 10.1016/j.mspro.2014.06.119

Google Scholar

[24] Romeyn A. Main rotor blade failure analysis report. 2005.

Google Scholar

[25] Inc. SH. In-Flight Separation of Main Rotor Blade and Collision with Terrain. 2011; (November).

Google Scholar

[26] Kieselbach R, Soyka G. Failure of a helicopter rotor, Technology, Law and Insurance. T and F Online. 2000; 5(3–4): 141–146.

DOI: 10.1080/135993700750364369

Google Scholar

[27] Klysz S, Lisiecki J, Kurdelski M. Material testing of the helicopter main rotor blades. 37th Solid Mechanics Conference. 2010.

Google Scholar

[28] Saleemsab Doddamani, Wang C, Mohamed MJ, Arefinkowser M. Fracture analysis of aa6061-graphite composite for the application of helicopter rotor blade. Frattura ed Integrita Strutturale. 2021; 15(58): 191–201

DOI: 10.3221/IGF-ESIS.58.14

Google Scholar

[29] Moreira PMGP, Jesus AMP, Ribeiro AS, Castro PMST. Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparison. Theoretical and Applied Fracture Mechanics. 2008; 50(2): 81–91.

DOI: 10.1016/j.tafmec.2008.07.007

Google Scholar

[30] Lina M, Shehadeh ISJ. The Effect of Adding Different Percentages of Manganese (Mn) and Copper (Cu) on the Mechanical Behavior of Aluminum. Jordan Journal of Mechanical and Industrial Engineering. 2016; 10(1): 19–26.

Google Scholar

[31] Davis JR. Aluminum and Aluminum Alloys. Metals Handbook Desk Edition. 2nd edn. ASM International; 1998. p.417–505.

DOI: 10.31399/asm.hb.mhde2.a0003121

Google Scholar

[32] Moreira PMGP, Santos T, Tavares SMO, Richter-Trummer V, Vilaça P, Castro PMST. Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6. Materials & Design. 2009; 30(1): 180–187.

DOI: 10.1016/j.matdes.2008.04.042

Google Scholar

[33] Zakaria HM. Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Engineering Journal. 2014; 5: 831–838.

DOI: 10.1016/j.asej.2014.03.003

Google Scholar

[34] ASTME399-22. Standard test method for linear-elastic plane strain fracture toughness KIc of metallic materials. American Society for Testing and Materials. 2022.

DOI: 10.1520/e0399-06e01

Google Scholar

[35] Jian Pu, Yali Zhang, Xiaogang Zhang, Xinlu Yuan, Pingdi Ren ZJ. Mapping the fretting corrosion behaviors of 6082 aluminum alloy in 3.5% NaCl solution. Wear. 2021; 482–483(203975): 1–11

DOI: 10.1016/j.wear.2021.203975

Google Scholar

[36] Zhu XK, Joyce JA. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Engineering Fracture Mechanics. 2012; 85: 1–46. DOI:10.1016/j.engfracmech. 2012.02.001

DOI: 10.1016/j.engfracmech.2012.02.001

Google Scholar

[37] Zhu Xian-Kui, Joyce JA. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Engineering Fracture Mechanics. 2012; 85: 1–46

DOI: 10.1016/j.engfracmech.2012.02.001

Google Scholar

[38] Raviraj MS, Sharanaprabhu CM, GCM. Experimental investigation of effect of specimen thickness on fracture toughness of Al-TiC composites,. Frattura ed Integrità Strutturale. 2016; 37: 360–368

DOI: 10.3221/IGF-ESIS.37.47

Google Scholar

[39] Ibrahim M Alqahtani, Andrew Starr, Mohammad Khan. Investigation of the Combined Influence of Temperature and Humidity on Fatigue Crack Growth Rate in Al6082 Alloy in a Coastal Environment. Materials 2023, 16, 6833

DOI: 10.3390/ma16216833

Google Scholar

[40] Delshad Gholami M, Hashemi R, MS. The effect of temperature on the mechanical properties and forming limit diagram of aluminum strips fabricated by accumulative roll bonding process. Journal of Materials Research and Technology. 2020; 9(2): 1831–1846.

DOI: 10.1016/j.jmrt.2019.12.016

Google Scholar

[41] Suresh S; Zamiski GF, Ritchie DRO. Oxide-Induced Crack Closure: An Explanation for Near-Threshold Corrosion Fatigue Crack Growth Behavior. Metallurgical and Materials Transactions A. 1981; 12(8): 1435–1443

DOI: 10.1007/bf02643688

Google Scholar

[42] Mrówka-Nowotnik G, Sieniawski J, MW. Intermetallic phase particles in 6082 aluminium alloy. Archives of Materials Science and Engineering. 2017; 28(2): 69–76.

Google Scholar