[1]
BP, British petroleum, statistical review of world energy, 2010.
Google Scholar
[2]
EIA, U.S. Energy Information Administration, International Energy Outlook, U.S. Department of Energy, 2014.
Google Scholar
[3]
U. Berardi, moving to sustainable buildings: paths to adopt green innovations in developed countries, Versita, London, 9788376560090, 2013.
DOI: 10.2478/9788376560113
Google Scholar
[4]
WJ. Duan, QB. Yu, ZL. Zuo, Q. Qin, P. Li and JXLiu, the technological calculation for synergistic system of BF slag waste recovery and carbon resources reduction. Energy conversion and Management, 2014. 87: pp.185-190
DOI: 10.1016/j.enconman.2014.07.029
Google Scholar
[5]
TC. Wang, WL. Luan, W. Wang, and ST. Tu, waste heat recovery through plate heat exchanger based thermoelectric generator system. Applied energy, 2014. 136: pp.860-865.
DOI: 10.1016/j.apenergy.2014.07.083
Google Scholar
[6]
W.L. Wang, Mobilized Thermal Energy Storage for Heat Recovery for Distributed Heating, in School of Sustainable Development of Society and Technology. 2010, Mälardalen University.
Google Scholar
[7]
U.D.o. Energy, Energy Use, Loss and Opportunities Analysis: U.S. Manufacturing & Mining. 2004.
Google Scholar
[8]
Y. Yabuki and T. Nagumo, Non-conduit Heat Distribution Using Waste Heat from a Sewage Sludge Incinerator. Proceedings of the Water Environment Federation, 2007. 2007(8): pp.9306-9309.
DOI: 10.2175/193864707787780620
Google Scholar
[9]
W. Wang, Y. Hu, J. Yan, J. Nyström, E. Dahlquist, Combined heat and power plant integrated with mobilized thermal energy storage. (M-TES) system. Front Energy Power Eng China 2010; 4(4): 469–74.
DOI: 10.1007/s11708-010-0123-9
Google Scholar
[10]
WL. Wang, J. Yan, E. Dahlquist, J. Nyström, A new mobilized energy storage system for industrial waste heat recovery for distributed heat supply. International conference of applied energy, Hong Kong; January 5–7, 2009.
DOI: 10.1016/j.apenergy.2012.11.010
Google Scholar
[11]
L.F.C. H. Mehling, Heat and cold storage with PCM. 2008, New York: Springer.
Google Scholar
[12]
K. Du, J. Calautit, Z. Wang, Y. Wu, and H. Liu, A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Applied Energy, 2018. 220: pp.242-273.
DOI: 10.1016/j.apenergy.2018.03.005
Google Scholar
[13]
S. Eid, M. Brouche, C. Lahoud, C.Lahoud. May 2021. Phase Change MAterials Technologies Review and Future Application in Lebanon: Part II. Key Engineernig Materials 886: 256-270.
DOI: 10.4028/www.scientific.net/kem.886.256
Google Scholar
[14]
S. Eid, M. Brouche, C. Lahoud, C.Lahoud. May 2021. Phase Change MAterials Technologies Review and Future Application in Lebanon: Part I. Key Engineernig Materials 886: 228-240.
DOI: 10.4028/www.scientific.net/kem.886.228
Google Scholar
[15]
W. Wang, Y. Hu, J. Yan, J. Nyström, A new mobilized energy storage system for industrial waste heat recovery for distributed heat supply. International conference of applied energy, Hong Kong; January 5–7, 2009.
Google Scholar
[16]
K. Du, J. Calautit, P. Eames, Y. Wu, A-state-of-the-art review of Phase Change Materials (PCM) in Mobilized- Thermal Energy Storage (M-TES) for recovering low-temperature Industrial Waste Heat (IWH) for distributed heat supply, Renewable Energy, 2021. 168: pp.1040-1057.
DOI: 10.1016/j.renene.2020.12.057
Google Scholar
[17]
JN. Chiu and V. Martin, Industrial surplus heat storage in smart cities. in ASME 2015 9th international conference on energy sustainability. 2015.
Google Scholar
[18]
N.M. A. Kaizawa, A Kawai, H Kamano, T Jozuka, T Senda, T Akiyama, Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat and Mass Transfer, 2008, 44:763-769.
DOI: 10.1007/s00231-007-0311-2
Google Scholar
[19]
A. Kaizawa, H. Kamano, A. Kawai, T. Jozuka, T. Senda, N. Maruoka, N. Okinaka, and T. Akiyama, Technical Feasibility Study of Waste Heat Transportation System Using Phase Change Material from Industry to City. ISIJ International, 2008. 48(4): pp.540-548.
DOI: 10.2355/isijinternational.48.540
Google Scholar
[20]
G. Peiró, J. Gasia, L. Miró, and L.F. Cabeza, Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage. Renewable Energy, 2015.83: pp.729-736.
DOI: 10.1016/j.renene.2015.05.029
Google Scholar
[21]
Y. Wang, K. Yu, and X. Ling, Experimental study on thermal performance of a mobilized thermal energy storage system: A case study of hydrated salt latent heat storage. Energy and Buildings, 2020. 210: p.109744.
DOI: 10.1016/j.enbuild.2019.109744
Google Scholar
[22]
G. Storch and A. Hauer. Cost-effectiveness of a heat energy distribution system based on mobile storage units: two case studies. In Ecostock conference. 2006.
Google Scholar
[23]
Mobile latent heat storage unit, efficient use of waste heat. 2013, Fraunhofer Umsicht.
Google Scholar
[24]
JN. Chiu, J. Castro Flores, V. Martin, and B. Lacarrière, Industrial surplus heat transportation for use in district heating. Energy, 2016. 110: pp.139-147.
DOI: 10.1016/j.energy.2016.05.003
Google Scholar
[25]
K. Nagano, K. Ogawa, T. Mochida, K. Hayashi, and H. Ogoshi, Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat. Applied Thermal Engineering, 2004. 24(2): pp.221-232.
DOI: 10.1016/j.applthermaleng.2003.09.003
Google Scholar
[26]
S. Guo, Q. Liu, J. Zhao, G. Jin, W. Wu, J. Yan, H. Li, H. Jin, Mobilized thermal energy storage: Materials, containers and economic evaluation, Energy conversion and Management 177 (2018) 315-329.
DOI: 10.1016/j.enconman.2018.09.070
Google Scholar
[27]
Li H, Wang W, Yan J, Dahlquist E, Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply, Applied energy 104 (2013) 178-186.
DOI: 10.1016/j.apenergy.2012.11.010
Google Scholar
[28]
M. Deckert, R. Scholz, S. Binder, A. Hornung, Economic efficiency of mobile latent heat storages, Energy Procedia 46 (2014) 171-177.
DOI: 10.1016/j.egypro.2014.01.170
Google Scholar
[29]
R.E. Hester and R.M. Harrison, "Energy storage options and their environmental effect", Royal society of chemistry 2019.
Google Scholar
[30]
Lebanese public data.
Google Scholar
[31]
H. Fang, J. Xia, K. Zhu, Y. Su, and Y. Jiang, Industrial waste heat utilization for low temperature district heating. Energy Policy, 2013. 62: pp.236-246.
DOI: 10.1016/j.enpol.2013.06.104
Google Scholar
[32]
V. Brancato, A. Frazzica, A. Sapienza, and A. Freni, Identification and characterization of promising phase change materials for solar cooling applications. Solar Energy Materials and Solar Cells, 2017. 160: pp.225-232.
DOI: 10.1016/j.solmat.2016.10.026
Google Scholar
[33]
M. Yuan, Y. Ren, C. Xu, F. Ye, and X. Du, Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage. Renewable Energy, 2019. 136: pp.211-222.
DOI: 10.1016/j.renene.2018.12.107
Google Scholar
[34]
F. Agyenim, P. Eames, and M. Smyth, Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system. Renewable Energy, 2011. 36(1): pp.108-117.
DOI: 10.1016/j.renene.2010.06.005
Google Scholar
[35]
A. Mawire, T.M. Lefenya, C.S. Ekwomadu, K.A. Lentswe, and A.B. Shobo, Performance comparison of medium temperature domestic packed bed latent heat storage systems. Renewable Energy, 2020. 146: pp.1897-1906.
DOI: 10.1016/j.renene.2019.08.063
Google Scholar
[36]
G. Gan and Y. Xiang, Experimental investigation of a photovoltaic thermal collector with energy storage for power generation, building heating and natural ventilation. Renewable Energy, 2020. 150: pp.12-22.
DOI: 10.1016/j.renene.2019.12.112
Google Scholar
[37]
Y. Lin, G. Alva, and G. Fang, Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy, 2018. 165: pp.685-708.
DOI: 10.1016/j.energy.2018.09.128
Google Scholar
[38]
M. Liu, W. Saman, et F. Bruno, "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems", Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp.2118-2132, 2012.
DOI: 10.1016/j.rser.2012.01.020
Google Scholar
[39]
www.therminol.com
Google Scholar
[40]
metals.4u.co.uk/materials/aluminium/aluminium-tube/1989-p.
Google Scholar
[41]
T. L. Bergman, A. S. Lavine, P. F. Incropera, D.P. Dewitt, Fundamentals of heat and mass transfer, seventh edition, John Wiley and sons, 2011.
Google Scholar
[42]
CTX CONTAINEX, technical specification for steel dry cargo container, specification no. ''CTX 20 DVDR-Domestic Spec. HH, October 2013.
Google Scholar
[43]
https://www.engineeringtoolbox.com/thermal-conductivity-metals-d/
Google Scholar
[44]
https://www.totalinsulation.com.au/
Google Scholar
[45]
H. Li, B. Saršon, H. Song, E. Dalhquist, E. Thorin, J. Yan, Potentials of energy saving and efficiency improvement from lighting and space heating: a case study of SAAB workshop. In: Proceedings of international conference on applied energy, Suzhou, China; July 6–8, 2012.
Google Scholar
[46]
International Renewable Energy Agency (IREA). Biomass for power generation. Renewable energy technologies: cost analysis series, vol. 1, Power Sector; June 2012.
Google Scholar
[47]
J. Sadhukhan, Ng KS. Economic and European union environmental sustainability criteria assessment of bio-oil-based biofuel systems: refinery integration cases. Ind Eng. Chem Res 2011; 50(11):6794–808.
DOI: 10.1021/ie102339r
Google Scholar
[48]
http://pelletheat.org/pellets/compare-fuel-costs/; 2012 [accessed 28.10.12].
Google Scholar
[49]
D. Matuszewska, M. Kuta, P. Olczak, Techno‐Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions. Energies 2020, 13, 3404.
DOI: 10.3390/en13133404
Google Scholar