[1]
J. Chapman, Emotionally durable design: objects, experiences and empathy. Routledge, London, 2012.
Google Scholar
[2]
E. Karana, O. Pedgley, V. Rognoli, On materials experience. Des. Issues 31(3) (2015) 16-27.
DOI: 10.1162/desi_a_00335
Google Scholar
[3]
L. Altamore, M. Ingrassia, S. Chironi, P. Columba, G. Sortino, A. Vukadin, S. Bacarella, Pasta experience: Eating with the five senses—a pilot study, AIMS Agric. Food 3 (2018) 493–520.
DOI: 10.3920/978-90-8686-898-8_6
Google Scholar
[4]
A. Haug, R. D. Graham, O. A. Christophersen, G. H. Lyons, How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis. 19(4) (2007) 209-228.
DOI: 10.1080/08910600701698986
Google Scholar
[5]
M. Wiberg, The materiality of interaction: Notes on the materials of interaction design. MIT press, Cambridge, Mass., USA, 2018.
Google Scholar
[6]
A. Ogura, K. Ito, S. Yoshida, K. Tanaka, Y. Itoh (2023). Transtiff: haptic interaction with a stick interface with various stiffness. In ACM SIGGRAPH 2023 Emerging Technologies (pp.1-2), Los Angeles, Ca., USA.
DOI: 10.1145/3588037.3595402
Google Scholar
[7]
A. P. Graesch, C. Maynard, A. Thomas, Discard, Emotions, and Empathy on the Margins of the Waste Stream. In: Archaeologies of the Heart, Springer, Cham, Switzerland, 141-161, 2020.
DOI: 10.1007/978-3-030-36350-5_10
Google Scholar
[8]
T. Splawa-Neyman, Discussion with three jackets: Making a material ecology. Nordes (2015), 1(6), 1-10.
DOI: 10.21606/nordes.2015.005
Google Scholar
[9]
N. Biloria, (2021). From smart to empathic cities. Front. Archit. Res, 10(1), 3-16.
Google Scholar
[10]
Z. Yan, J. Cortese, I can feel your pain: investigating the role of empathy and guilt on sustainable behavioral intentions to reduce, reuse, and recycle plastic bags among college students. Sustainability 15(8) (2023) 6572.
DOI: 10.3390/su15086572
Google Scholar
[11]
I. Paris, Domestic appliances and industrial design: the Italian white-goods industry during the 1950s and 1960s. Technol. Cult. 57 (3) (2016) 612-648.
DOI: 10.1353/tech.2016.0073
Google Scholar
[12]
L. Sossini, R. Santi, B. Del Curto (2022). The Colours of Sustainability: how materials CMF Design can guide sustainable perceptions and behaviours. In Colour and Colorimetry. Multidisciplinary Contributions (Vol. 17, pp.277-284). Andrea Siniscalco.
Google Scholar
[13]
M. Wijaya, D. Lau, S. Horrocks, F. McGlone, H. Ling, A. Schirmer, The human "feel" of touch contributes to its perceived pleasantness. J. Exp.Psychol. Hum. Percept. Perform. 46(2)(2020). 155.
DOI: 10.1037/xhp0000705
Google Scholar
[14]
S. Kabasci, Biobased plastics. In Plastic waste and recycling (pp.67-96). Academic Press, 2020.
DOI: 10.1016/b978-0-12-817880-5.00004-9
Google Scholar
[15]
C. Cecchini, Bioplastics made from upcycled food waste. Prospects for their use in the field of design. Des. J. 20(sup1) (2017) S1596-S1610.
DOI: 10.1080/14606925.2017.1352684
Google Scholar
[16]
R. Mülhaupt, Green polymer chemistry and bio‐based plastics: dreams and reality. Macromol. Chem. Phys. 214(2) (2013) 159-174.
DOI: 10.1002/macp.201200439
Google Scholar
[17]
C. Santulli, V. Rognoli, Material tinkering for design education on waste upcycling. Design Technol. Ed. 25 (2020) 50-73.
Google Scholar
[18]
E. O. Espinoza, B. W. Baker, C. A. Berry, The analysis of sea turtle and bovid keratin artefacts using drift spectroscopy and discriminant analysis. Archaeometry 49(4) (2007) 685-698.
DOI: 10.1111/j.1475-4754.2007.00328.x
Google Scholar
[19]
D. Tristantini, A. Yunan, Characterization of cellulose acetate based on empty fruit bunches and dried jackfruit leaves as replacement candidates for microbeads. In E3S Web of Conferences (Vol. 67, p.04024). EDP Sciences, 2018.
DOI: 10.1051/e3sconf/20186704024
Google Scholar
[20]
K. Fletcher, Durability, fashion, sustainability: The processes and practices of use. Fash. Pract. 4 (2012) 221-238.
Google Scholar
[21]
A. Al-Hamrani, M. Kucukvar, W. Alnahhal, E. Mahdi, N. C. Onat, Green concrete for a circular economy: A review on sustainability, durability, and structural properties. Materials 14(2021) 351.
DOI: 10.3390/ma14020351
Google Scholar
[22]
Y. Chen, A. K. Awasthi, F. Wei, Q. Tan, J. Li, Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 752 (2021) 141772.
DOI: 10.1016/j.scitotenv.2020.141772
Google Scholar
[23]
B. Sharma, S. Shekhar, S. Sharma, P. Jain, The paradigm in conversion of plastic waste into value added materials. Clean. Eng. Technol. 4 (2021) 100254.
DOI: 10.1016/j.clet.2021.100254
Google Scholar
[24]
A. Krawczyk, N. Jaguszewska, W. Ziółkiewicz, M. Grodzińska-Jurczak, The ivory tower of academia in the era of climate change: European scientists' engagement in science popularization related to single-use plastics. Environ. Sci. Policy 146 (2023) 185-202.
DOI: 10.1016/j.envsci.2023.05.016
Google Scholar
[25]
J.M.F. Mendoza, F. D'aponte, D. Gualtieri, A. Azapagic, Disposable baby diapers: Life cycle costs, eco-efficiency and circular economy. J. Clean. Prod. 211 (2019) 455-467.
DOI: 10.1016/j.jclepro.2018.11.146
Google Scholar
[26]
X. Qi, P. P. Liu (2021, November). Construal Level and Guilt Promote Pro-Environmental Behavioral Intention: Based on Analysis of Variance. In 2021 2nd International Conference on Information Science and Education (ICISE-IE) (pp.743-748). IEEE.
DOI: 10.1109/icise-ie53922.2021.00173
Google Scholar
[27]
M.E. Ntekpe, E.O. Mbong, E.N. Edem, S. Hussain, Disposable diapers: impact of disposal methods on public health and the environment. Am. J. Med. Public Health 1 (2) (2020) 1009.
Google Scholar
[28]
A.P. Bortoleto, Waste prevention policy and behaviour: New approaches to reducing waste generation and its environmental impacts. Routledge, London, 2014.
Google Scholar
[29]
S. Nichols, Young children and sustainable consumption: An early childhood education agenda. In Designing for Zero Waste (pp.53-66). Routledge, London, 2013.
DOI: 10.4324/9780203146057-14
Google Scholar
[30]
S.K. Jha, S. Veeramani, Sorting responsible business practices in fast fashion: a case study of Zara. J. Manage. Public Policy 12(2) (2021) 54-58.
DOI: 10.47914/jmpp.2020.v12i2.004
Google Scholar
[31]
U. Dandavate, E. B. N. Sanders, S. Stuart (1996, October). Emotions matter: User empathy in the product development process. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 40, No. 7, pp.415-418). Sage CA: Los Angeles, CA: SAGE Publications.
DOI: 10.1177/154193129604000709
Google Scholar
[32]
D McDonagh, J. Thomas, Rethinking design thinking: Empathy supporting innovation. Australas. Med. J. 3(8) (2010) 458-464.
DOI: 10.4066/amj.2010.391
Google Scholar
[33]
G. Hawkins, Plastics in: Fueling Culture: 101 Words for Energy and Environment, I. Szeman, J. Wenzel, & P. Yaeger (Eds.), Fordham University Press, 2017, 271-274.
DOI: 10.1515/9780823273935
Google Scholar
[34]
J. Newlin, G. A. Jimenez, D. Hester, L. M. Blank (2010). Thin marble facades: History, evaluation, and maintenance. In: Structures Congress 2010 (pp.1051-1062).
DOI: 10.1061/41130(369)95
Google Scholar
[35]
R. Proctor (2015). The sustainable design book. Hachette UK.
Google Scholar
[36]
J. Park, S. H. Han, A fuzzy rule-based approach to modeling affective user satisfaction towards office chair design. Int. J. Ind. Ergonom 34. (2004) 31-47.
DOI: 10.1016/j.ergon.2004.01.006
Google Scholar
[37]
I. Confente, D. Scarpi, I. Russo, Marketing a new generation of bio-plastics products for a circular economy: The role of green self-identity, self-congruity, and perceived value. J. Bus. Res. 112 (2020) 431-439.
DOI: 10.1016/j.jbusres.2019.10.030
Google Scholar
[38]
A. Boetzkes, A. Pendakis, Visions of eternity: Plastic and the ontology of oil. E-Flux Magazine (2013) 47.
Google Scholar
[39]
M.Q. Zhang, M.Z. Rong, X. Lu, Fully biodegradable natural fiber composites from renewable resources: all-plant fiber composites. Compos. Sci. Technol. 65(15-16) (2005) 2514-2525.
DOI: 10.1016/j.compscitech.2005.06.018
Google Scholar
[40]
F. Scognamiglio, D. M. Gattia, G. Roselli, F. Persia, U. De Angelis, C. Santulli, Thermoplastic Starch (TPS) films added with mucilage from Opuntia Ficus Indica: Mechanical, microstructural and thermal characterization. Materials 13(4) (2020) 1000.
DOI: 10.3390/ma13041000
Google Scholar
[41]
B.E. Teixeira-Costa, C.T. Andrade, C.T. Chitosan as a valuable biomolecule from seafood industry waste in the design of green food packaging. Biomolecules, 11(11) (2021). 1599.
DOI: 10.3390/biom11111599
Google Scholar
[42]
M. Bootklad, K. Kaewtatip, Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydr. Polym. 97(2) (2013) 315-320.
DOI: 10.1016/j.carbpol.2013.05.030
Google Scholar
[43]
E. Karana, D. Blauwhoff, E. J. Hultink, S. Camere, When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Des. 12(2) (2018) 119-136.
Google Scholar
[44]
J. Fike, Industrial hemp: renewed opportunities for an ancient crop. Crit. Rev. Plant Sci. 35 (5-6) (2016) 406-424.
DOI: 10.1080/07352689.2016.1257842
Google Scholar
[45]
C. Ayala-Garcia, V. Rognoli, The new aesthetic of DIY-materials. Des. J. 20 (sup1) (2017) S375-S389.
DOI: 10.1080/14606925.2017.1352905
Google Scholar