A Different Empathy towards the Use of DIY Biocomposites in Design

Article Preview

Abstract:

The interaction of oil-based plastics with the user is limited to the sight and possibly touch, being in any case predictable and not very satisfying. Since bioplastics have been prevalently designed to fit the needs for plastic substitution, the natural elements present in it have intentionally been concealed, so that it is difficult for the user to recover the sense of what using a natural material is like, even worst of what is dealing with an upcycled waste in a material fit-for-use in design and not intended for single use. In this work, the preparation of DIY materials including different kinds of food or non-food waste according to a self-developed and tailored recipe may constitute a possibility. The surface aspect and the expressive properties of a set of twelve selected DIY materials developed in University di Camerino according to an opposite characteristics map are reported, to serve as reflection of their likely empathy content and on building a richer and more reputable interaction with materials including waste, in view of an effective upcycling process.

You have full access to the following eBook

Info:

Periodical:

Pages:

99-108

Citation:

Online since:

January 2024

Authors:

Export:

Share:

Citation:

* - Corresponding Author

[1] J. Chapman, Emotionally durable design: objects, experiences and empathy. Routledge, London, 2012.

Google Scholar

[2] E. Karana, O. Pedgley, V. Rognoli, On materials experience. Des. Issues 31(3) (2015) 16-27.

DOI: 10.1162/desi_a_00335

Google Scholar

[3] L. Altamore, M. Ingrassia, S. Chironi, P. Columba, G. Sortino, A. Vukadin, S. Bacarella, Pasta experience: Eating with the five senses—a pilot study, AIMS Agric. Food 3 (2018) 493–520.

DOI: 10.3920/978-90-8686-898-8_6

Google Scholar

[4] A. Haug, R. D. Graham, O. A. Christophersen, G. H. Lyons, How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis. 19(4) (2007) 209-228.

DOI: 10.1080/08910600701698986

Google Scholar

[5] M. Wiberg, The materiality of interaction: Notes on the materials of interaction design. MIT press, Cambridge, Mass., USA, 2018.

Google Scholar

[6] A. Ogura, K. Ito, S. Yoshida, K. Tanaka, Y. Itoh (2023). Transtiff: haptic interaction with a stick interface with various stiffness. In ACM SIGGRAPH 2023 Emerging Technologies (pp.1-2), Los Angeles, Ca., USA.

DOI: 10.1145/3588037.3595402

Google Scholar

[7] A. P. Graesch, C. Maynard, A. Thomas, Discard, Emotions, and Empathy on the Margins of the Waste Stream. In: Archaeologies of the Heart, Springer, Cham, Switzerland, 141-161, 2020.

DOI: 10.1007/978-3-030-36350-5_10

Google Scholar

[8] T. Splawa-Neyman, Discussion with three jackets: Making a material ecology. Nordes (2015), 1(6), 1-10.

DOI: 10.21606/nordes.2015.005

Google Scholar

[9] N. Biloria, (2021). From smart to empathic cities. Front. Archit. Res, 10(1), 3-16.

Google Scholar

[10] Z. Yan, J. Cortese, I can feel your pain: investigating the role of empathy and guilt on sustainable behavioral intentions to reduce, reuse, and recycle plastic bags among college students. Sustainability 15(8) (2023) 6572.

DOI: 10.3390/su15086572

Google Scholar

[11] I. Paris, Domestic appliances and industrial design: the Italian white-goods industry during the 1950s and 1960s. Technol. Cult. 57 (3) (2016) 612-648.

DOI: 10.1353/tech.2016.0073

Google Scholar

[12] L. Sossini, R. Santi, B. Del Curto (2022). The Colours of Sustainability: how materials CMF Design can guide sustainable perceptions and behaviours. In Colour and Colorimetry. Multidisciplinary Contributions (Vol. 17, pp.277-284). Andrea Siniscalco.

Google Scholar

[13] M. Wijaya, D. Lau, S. Horrocks, F. McGlone, H. Ling, A. Schirmer, The human "feel" of touch contributes to its perceived pleasantness. J. Exp.Psychol. Hum. Percept. Perform. 46(2)(2020). 155.

DOI: 10.1037/xhp0000705

Google Scholar

[14] S. Kabasci, Biobased plastics. In Plastic waste and recycling (pp.67-96). Academic Press, 2020.

DOI: 10.1016/b978-0-12-817880-5.00004-9

Google Scholar

[15] C. Cecchini, Bioplastics made from upcycled food waste. Prospects for their use in the field of design. Des. J. 20(sup1) (2017) S1596-S1610.

DOI: 10.1080/14606925.2017.1352684

Google Scholar

[16] R. Mülhaupt, Green polymer chemistry and bio‐based plastics: dreams and reality. Macromol. Chem. Phys. 214(2) (2013) 159-174.

DOI: 10.1002/macp.201200439

Google Scholar

[17] C. Santulli, V. Rognoli, Material tinkering for design education on waste upcycling. Design Technol. Ed. 25 (2020) 50-73.

Google Scholar

[18] E. O. Espinoza, B. W. Baker, C. A. Berry, The analysis of sea turtle and bovid keratin artefacts using drift spectroscopy and discriminant analysis. Archaeometry 49(4) (2007) 685-698.

DOI: 10.1111/j.1475-4754.2007.00328.x

Google Scholar

[19] D. Tristantini, A. Yunan, Characterization of cellulose acetate based on empty fruit bunches and dried jackfruit leaves as replacement candidates for microbeads. In E3S Web of Conferences (Vol. 67, p.04024). EDP Sciences, 2018.

DOI: 10.1051/e3sconf/20186704024

Google Scholar

[20] K. Fletcher, Durability, fashion, sustainability: The processes and practices of use. Fash. Pract. 4 (2012) 221-238.

Google Scholar

[21] A. Al-Hamrani, M. Kucukvar, W. Alnahhal, E. Mahdi, N. C. Onat, Green concrete for a circular economy: A review on sustainability, durability, and structural properties. Materials 14(2021) 351.

DOI: 10.3390/ma14020351

Google Scholar

[22] Y. Chen, A. K. Awasthi, F. Wei, Q. Tan, J. Li, Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 752 (2021) 141772.

DOI: 10.1016/j.scitotenv.2020.141772

Google Scholar

[23] B. Sharma, S. Shekhar, S. Sharma, P. Jain, The paradigm in conversion of plastic waste into value added materials. Clean. Eng. Technol. 4 (2021) 100254.

DOI: 10.1016/j.clet.2021.100254

Google Scholar

[24] A. Krawczyk, N. Jaguszewska, W. Ziółkiewicz, M. Grodzińska-Jurczak, The ivory tower of academia in the era of climate change: European scientists' engagement in science popularization related to single-use plastics. Environ. Sci. Policy 146 (2023) 185-202.

DOI: 10.1016/j.envsci.2023.05.016

Google Scholar

[25] J.M.F. Mendoza, F. D'aponte, D. Gualtieri, A. Azapagic, Disposable baby diapers: Life cycle costs, eco-efficiency and circular economy. J. Clean. Prod. 211 (2019) 455-467.

DOI: 10.1016/j.jclepro.2018.11.146

Google Scholar

[26] X. Qi, P. P. Liu (2021, November). Construal Level and Guilt Promote Pro-Environmental Behavioral Intention: Based on Analysis of Variance. In 2021 2nd International Conference on Information Science and Education (ICISE-IE) (pp.743-748). IEEE.

DOI: 10.1109/icise-ie53922.2021.00173

Google Scholar

[27] M.E. Ntekpe, E.O. Mbong, E.N. Edem, S. Hussain, Disposable diapers: impact of disposal methods on public health and the environment. Am. J. Med. Public Health 1 (2) (2020) 1009.

Google Scholar

[28] A.P. Bortoleto, Waste prevention policy and behaviour: New approaches to reducing waste generation and its environmental impacts. Routledge, London, 2014.

Google Scholar

[29] S. Nichols, Young children and sustainable consumption: An early childhood education agenda. In Designing for Zero Waste (pp.53-66). Routledge, London, 2013.

DOI: 10.4324/9780203146057-14

Google Scholar

[30] S.K. Jha, S. Veeramani, Sorting responsible business practices in fast fashion: a case study of Zara. J. Manage. Public Policy 12(2) (2021) 54-58.

DOI: 10.47914/jmpp.2020.v12i2.004

Google Scholar

[31] U. Dandavate, E. B. N. Sanders, S. Stuart (1996, October). Emotions matter: User empathy in the product development process. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 40, No. 7, pp.415-418). Sage CA: Los Angeles, CA: SAGE Publications.

DOI: 10.1177/154193129604000709

Google Scholar

[32] D McDonagh, J. Thomas, Rethinking design thinking: Empathy supporting innovation. Australas. Med. J. 3(8) (2010) 458-464.

DOI: 10.4066/amj.2010.391

Google Scholar

[33] G. Hawkins, Plastics in: Fueling Culture: 101 Words for Energy and Environment, I. Szeman, J. Wenzel, & P. Yaeger (Eds.), Fordham University Press, 2017, 271-274.

DOI: 10.1515/9780823273935

Google Scholar

[34] J. Newlin, G. A. Jimenez, D. Hester, L. M. Blank (2010). Thin marble facades: History, evaluation, and maintenance. In: Structures Congress 2010 (pp.1051-1062).

DOI: 10.1061/41130(369)95

Google Scholar

[35] R. Proctor (2015). The sustainable design book. Hachette UK.

Google Scholar

[36] J. Park, S. H. Han, A fuzzy rule-based approach to modeling affective user satisfaction towards office chair design. Int. J. Ind. Ergonom 34. (2004) 31-47.

DOI: 10.1016/j.ergon.2004.01.006

Google Scholar

[37] I. Confente, D. Scarpi, I. Russo, Marketing a new generation of bio-plastics products for a circular economy: The role of green self-identity, self-congruity, and perceived value. J. Bus. Res. 112 (2020) 431-439.

DOI: 10.1016/j.jbusres.2019.10.030

Google Scholar

[38] A. Boetzkes, A. Pendakis, Visions of eternity: Plastic and the ontology of oil. E-Flux Magazine (2013) 47.

Google Scholar

[39] M.Q. Zhang, M.Z. Rong, X. Lu, Fully biodegradable natural fiber composites from renewable resources: all-plant fiber composites. Compos. Sci. Technol. 65(15-16) (2005) 2514-2525.

DOI: 10.1016/j.compscitech.2005.06.018

Google Scholar

[40] F. Scognamiglio, D. M. Gattia, G. Roselli, F. Persia, U. De Angelis, C. Santulli, Thermoplastic Starch (TPS) films added with mucilage from Opuntia Ficus Indica: Mechanical, microstructural and thermal characterization. Materials 13(4) (2020) 1000.

DOI: 10.3390/ma13041000

Google Scholar

[41] B.E. Teixeira-Costa, C.T. Andrade, C.T. Chitosan as a valuable biomolecule from seafood industry waste in the design of green food packaging. Biomolecules, 11(11) (2021). 1599.

DOI: 10.3390/biom11111599

Google Scholar

[42] M. Bootklad, K. Kaewtatip, Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydr. Polym. 97(2) (2013) 315-320.

DOI: 10.1016/j.carbpol.2013.05.030

Google Scholar

[43] E. Karana, D. Blauwhoff, E. J. Hultink, S. Camere, When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Des.  12(2) (2018) 119-136.

Google Scholar

[44] J. Fike, Industrial hemp: renewed opportunities for an ancient crop. Crit. Rev. Plant Sci. 35 (5-6) (2016) 406-424.

DOI: 10.1080/07352689.2016.1257842

Google Scholar

[45] C. Ayala-Garcia, V. Rognoli, The new aesthetic of DIY-materials. Des. J. 20 (sup1) (2017) S375-S389.

DOI: 10.1080/14606925.2017.1352905

Google Scholar