[1]
J. Cho, S. Jeong, and Y. Kim, Commercial and research battery technologies for electrical energy storage applications, Progress in Energy and Combustion Science. 48 (2015) 84-101.
DOI: 10.1016/j.pecs.2015.01.002
Google Scholar
[2]
M.S. Ghazvini1, G. Pulletikurthi1, T. Cui1, C. Kuhl1, F. Endres, Electrodeposition of zinc from 1-ethyl-3-methylimidazolium acetate-water mixtures: investigations on the applicability of the electrolyte for Zn-air batteries, Journal of The Electrochemical Society. 165(9) (2018) 354.
DOI: 10.1149/2.0181809jes
Google Scholar
[3]
X. Yan, Y. Ha, R. Wu, Binder‐Free Air Electrodes for Rechargeable Zinc‐Air Batteries: Recent Progress and Future Perspectives, Small Methods. 5(4) (2021) 2000827.
DOI: 10.1002/smtd.202000827
Google Scholar
[4]
J. Pan, Y. Xu, H. Yang, Z. Dong, H. Liu, B. Xia, Advanced architectures and relatives of air electrodes in Zn–air batteries, Advanced Science. 5(4) (2018) 1700691.
DOI: 10.1002/advs.201700691
Google Scholar
[5]
X. Cai, L. Lai, J. Linb, Z. Shen, Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design, Materials Horizons. 4(6) (2017) 945-796.
DOI: 10.1039/c7mh00358g
Google Scholar
[6]
K. Harting, U. Kunz, T. Turek, Zinc-air batteries: prospects and challenges for future improvement, Zeitschrift für Physikalische Chemie. 226(2) (2012) 151-166.
DOI: 10.1524/zpch.2012.0152
Google Scholar
[7]
B. Lee, H. Lee, H. Kim, K. Chung, B. Choa, S. Hyoung, Elucidating the intercalation mechanism of zinc ions into αMnO 2 for rechargeable zinc batteries, Chemical communications. 51(45) (2015) 9265-9268.
DOI: 10.1039/c5cc02585k
Google Scholar
[8]
T. Zhang, Z. Tao, J. Chen, Magnesium–air batteries: from principle to application, Materials Horizons. 1(2) (2014) 196-206.
Google Scholar
[9]
L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo, G. Liang, N. Li, H. Zhang, J.A. Zapien, C. Zhi, Super‐stretchable zinc–air batteries based on an alkaline‐ tolerant dual‐network hydrogel electrolyte, Advanced Energy Materials. 9(12) (2019) 1803046.
DOI: 10.1002/aenm.201803046
Google Scholar
[10]
B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F.G. de Arquer, C.T. Dinh, F. Fan, M. Yuan, E. Emre Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H. L Xin, H. Yang, A. Vojvodic, E. Edward H Sargent, Homogeneously dispersed multimetal oxygen-evolving catalysts, Science. 352(6283) (2016) 333-337.
DOI: 10.1126/science.aaf1525
Google Scholar
[11]
L. Han, S. Dong, E. Wang, Transition‐metal (Co, Ni, and Fe)‐based electrocatalysts for the water oxidation reaction, Advanced materials. 28(42) (2016) 9266-9291.
DOI: 10.1002/adma.201602270
Google Scholar
[12]
F. Liao, X. Zhao, G. Yang, Q. Cheng, L. Mao, L. Chen, Recent advances on two-dimensional NiFe-LDHs and their composites for electrochemical energy conversion and storage, Journal of Alloys and Compounds. 872 (2021) 159649.
DOI: 10.1016/j.jallcom.2021.159649
Google Scholar
[13]
S. Niu, Y. Sun, G. Sun, D. Rakov, Y Li, Y Ma, J. Chu, P. Xu, Stepwise electrochemical construction of FeOOH/Ni (OH) 2 on Ni foam for enhanced electrocatalytic oxygen evolution, ACS Applied Energy Materials. 2(5) (2019) 3927-3935.
DOI: 10.1021/acsaem.9b00785
Google Scholar
[14]
M.B. Stevens, C. D. M. Trang, L.J. Enman, J. Deng, S.W. Boettcher, Reactive Fe-sites in Ni/Fe (oxy) hydroxide are responsible for exceptional oxygen electrocatalysis activity, Journal of the American Chemical Society. 139(33) (2017) 11361-11364.
DOI: 10.1021/jacs.7b07117
Google Scholar
[15]
G. Zhang, L Shen, P. Schmatz, K. Krois, B. J.M. Etzold, Cathodic activated stainless steel mesh as a highly active electrocatalyst for the oxygen evolution reaction with self-healing possibility, Journal of Energy Chemistry. 49 (2020) 153-160.
DOI: 10.1016/j.jechem.2020.01.025
Google Scholar
[16]
A.A. Kashale, C. Yi, K. Cheng, J. Guo, Y. Pan, I.P. Chen, Binder-free heterostructured NiFe2O4/NiFe LDH nanosheet composite electrocatalysts for oxygen evolution reactions, ACS Applied Energy Materials. 3(11) (2020) 10831-10840.
DOI: 10.1021/acsaem.0c01863
Google Scholar
[17]
Z. Cai, D. Zhou, M Wang, S. Bak, Y. Wu, Z. Wu, Y. Tian, X. Xiong, Y. Li, W. Liu, S. Siahrostami, Y. Kuang, X. Yang, H. Duan, Z. Feng, H. Wang, X. Sun, Introducing Fe2+ into nickel–iron layered double hydroxide: local structure modulated water oxidation activity, Angewandte Chemie. 130(30) (2018) 9536-9540.
DOI: 10.1002/ange.201804881
Google Scholar