[1]
L. Nancy, D. Clelland, , MSD. «Removable vs fixed bridge" - Part 1. http://www.netwellness.org/question.cfm/33417.htm. Accessed 26/7/2009. (2005).
Google Scholar
[2]
J. A. Soncini, et al., Direct and indirect restorative materials,. The Journal of the American Dental Association. 134, 463-472.
Google Scholar
[3]
H. T. Shillingburg, et al. «Fundamentals of Fixed Prosthodontics". 3ed edition. North Kimberly Drive. Quintessence Publication. (1997), 80-86.
Google Scholar
[4]
S. W. Chang, D.W. Dental prosthesis for missing teeth, http://www.aboutwe.com/Pg2012,13,1420Excellence20H.pdf.Accessed. 13/7/2009. (2008).
Google Scholar
[5]
W.Y. Lam, Botelho M.G, Mc Grath C.P. Longevity of implant crowns and 2-unit cantilevered bonded bridges.Clin Oral Implants Res; 24 (12): (2013), 1369-74.
DOI: 10.1111/clr.12034
Google Scholar
[6]
A.Sharma, G.R. Rahul, S.T. Poduval, Shetty K.Assessment of various factors for feasibility of fixed Cantilever bridge: a review study. ISRN Dent 2012;(2012):259891.
DOI: 10.5402/2012/259891
Google Scholar
[7]
A. Lanier Advantages and disadvantages of dental bridges, http://www.dentaldepartures.com/ article/procedures/advantages-and-disadvantages-of-dental-bridges/ Accessed 1/1/2012. (2012).
Google Scholar
[8]
A. Geramy, SM. Morgano. Finite element analysis of three designs of an implant-supported molar crown,. Journal of Prosthetic Dental; 92(5), (2004) 434-40.
DOI: 10.1016/j.prosdent.2004.08.011
Google Scholar
[9]
S. Yokoyama, N. Wakabayashi, M. Shiota, Ohyama. Stress analysis in edentulous mandibular bone supporting implant-retained 1-piece or multiple superstructures,. International Journal Oral Maxillofaciale Implants, 20(4), (2005) 578–83.
Google Scholar
[10]
D. Bozkaya, S. Muftu, A. Muftu. «Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis". Journal of Prosthetic Dental, 92, (2004) 523–30.
DOI: 10.1016/j.prosdent.2004.07.024
Google Scholar
[11]
C. Lídia, A. Ramos, Simões. A Finite element analysis of a dental implant system with an elastomeric stress barrier,, summer bioengineering conference, June, 25–29, Sonesta Beach Resort in Key Biscayne, Florida. (2003).
Google Scholar
[12]
E. W. Skinner Sciences des matériaux dentaires,. 6ème édition Paris: Prélat. (1971).
Google Scholar
[13]
N. Djebbar, B. Serier, B. Bachir Bouiadjra, S. Benbarek, A. Drai Analysis of the effect of load direction on the stress distribution in dental implant,. Material Design, 31, (2010) 2097–100.
DOI: 10.1016/j.matdes.2009.10.042
Google Scholar
[14]
SJ. Hoshaw, JB. Brunski, GVB. Cochran. Mechanical loading of Brånemark implants affects interfacial bone modeling and remodelling,. International Journal Oral Maxillofacial Implants, 9(3), (1994) 345–60.
Google Scholar
[15]
H. Spiekermann. Color atlas of dental medicine: implantology,. New York: Thieme;. (1995). https://doi.org/10.14219/jada.archive.1996.0028.
Google Scholar
[16]
OA. Abu-Hammad, A. Harrison, D. Williams. The effect of a hidroxyapatite-reinforced polyethylene stress distributor in a dental implant on compressive stress levels in surrounding bone,. International Journal of Oral Maxillofacial Implants, 15(4), (2000) 559–64.
Google Scholar
[17]
JB. Brunski. Biomechanics of dental implants,. In: Block MS, Kent JN, Guerra LR editors. Implants in dentistry: essentials of endosseous implants for maxillofacial reconstruction. Philadelphia: W.B. Saunders, (1997) 63–71.
Google Scholar
[18]
CE. Misch, MW. Bidez. A scientific rationale for dental implant design,. In: Misch CE editor. Contemporary implant dentistry. 3rd ed. St. Louis: Mosby; (2007) 329–44.
DOI: 10.1016/b978-0-323-07845-0.00015-4
Google Scholar
[19]
E. Fernàndez, FJ. Gil, C. Aparicio, M. Nilsson, S. Sarda, D. Rodriguez. Materials in dental implantology,. In: Natali AN, editor. Dental biomechanics. London: Taylor & Francis. (2003).
DOI: 10.1201/9780203514849.ch5
Google Scholar
[20]
AN. Natali, PG. Pavan. Numerical approach to dental biomechanics,. In: Natali AN, editor. Dental biomechanics. London: Taylor & Francis; (2003).
DOI: 10.1201/9780203514849-14
Google Scholar
[21]
AN. Natali, PG. Pavan. A comparative analysis based on different strength criteria for evaluation of risk factor for dental implants,. Comput Methods Biomech Eng 5, (2002)127–33.
DOI: 10.1080/10255840290032144
Google Scholar
[22]
T. Achour , A. Merdji, B. Bachir Bouiadjra, B. Serier,N. Djebbar. Stress distribution in dental implant with elastomeric stress barrier,, Materials and Design 32; (2011) 282-290.
DOI: 10.1016/j.matdes.2010.05.053
Google Scholar
[23]
AK. Patra, JM. Depaolo, D'Souza KS, D. Detolla, MA. Meenaghan. Guidelines for analysis and redesign of dental implants,. Implant Dent, 7(4), (1998) 355–68.
DOI: 10.1097/00008505-199807040-00015
Google Scholar
[24]
L. Minatel, F. Ramos Verri, G. Abu Halawa Kudo, D. Augusto de Faria Almeida, Victor Eduardo de Souza Batista, Cleidiel Aparecido Araujo Lemos, Eduardo Piza Pellizzer, Joel Ferreira Santiago Junior, Effect of different types of prosthetic platforms on stress-distribution in dental implant-supported prostheses,, Materials Science and Engineering C 71, (2017) 35–42.
DOI: 10.1016/j.msec.2016.09.062
Google Scholar
[25]
HJ. Meijer, FJ. Starmans, WH. Steen, F. Bosman. A three-dimensional, finite-element analysis of bone around dental implants in an edentulous human mandible,. Arch Oral Biol, 38(6), (1993) 491–6.
DOI: 10.1016/0003-9969(93)90185-o
Google Scholar
[26]
R. Razaghi, M. Mallakzadeh and M. Haghpanahi Dynamic simulation and finite element analysis of the maxillary bone injury around dental implant during chewing different food ,. Biomedical Engineering Applications Basis and Communications, 28(2), (2016) 14-24.
DOI: 10.4015/s1016237216500149
Google Scholar
[27]
F. Ramos Verri, J.F. Santiago Junior, D.A. de Faria Almeida, G.B. de Oliveira, V.E. de Souza Batista, H.Marques Honorio, P.Y. Noritomi, E.P. Pellizzer, Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test,, J. Biomech. 48, (2015) 138–145.
DOI: 10.1016/j.jbiomech.2014.10.021
Google Scholar
[28]
N. Djebbar, B. Serier and B. Bachir Bouiadjra Stress Distribution of the Variable Dynamic Loading in the Dental Implant: A Three-Dimensional Finite Element Analysis,. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 31(2017), 44-52.
DOI: 10.4028/www.scientific.net/jbbbe.31.44
Google Scholar
[29]
HH. Ammar, P. Ngan, RJ. Crout, VH. Mucino, OM. Mukdadi, Three dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement,. Am J OrthodDentofacialOrthop, 139(2011), 59-71.
DOI: 10.1016/j.ajodo.2010.09.020
Google Scholar
[30]
O.Kayabasi, E.Yuzbasioglu, F.Erzincanli, Static, dynamic and fatigue behaviours of dental implant using finite element method,, Adv Eng Softw, 37(2006), 58-649.
Google Scholar
[31]
Z.Miller, MB.Fuchs, M.Arcan, Trabecular bone adaptation with an orthotropic material model,, J.Biomech, 35(2002), 247–56.
DOI: 10.1016/s0021-9290(01)00192-0
Google Scholar
[32]
C. Wang, G. Fu, F. Deng, Difference of natural teeth and implant-supported restoration: A comparison of bone remodeling simulations,. Journal of Dental Sciences, 14 (2015), 1-11.
DOI: 10.1016/j.jds.2014.11.001
Google Scholar
[33]
AS. Bonnet, M. Postaire, P. Lipinski. Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and foodstuff position,. Med Eng Phys, 31, (2009) 806–15.
DOI: 10.1016/j.medengphy.2010.01.002
Google Scholar
[34]
N. Wakabayashi, M. Ona, T. Suzuki, Y. Igarashi. Nonlinear finite element analyses: advances and challenges in dental applications,. J Dent 36, (2008) 463–471.
DOI: 10.1016/j.jdent.2008.03.010
Google Scholar
[35]
T. Li, L. Kong, Y. Wang, K. Hu, L. Song, B. Liu, et al. Selection of optimal dental implant diameter and length in type IV bone: a three-dimensional finite element analysis,. Int J Oral Maxillofacial Surg 38, (2009) 1077–83.
DOI: 10.1016/j.ijom.2009.07.001
Google Scholar
[36]
F. Hild et S. Roux, Imagerie 3D en mécanique des materiaux. Section Corrélation d'images volumiques. Publisher traite MIM (Hermes). Editor Buffiere, J.-Y., Maire, E.. (2014).
Google Scholar
[37]
W. Wang et al. A new method combining finite element analysis and digital image correlation to assess macroscopic mechanical properties of dentin. Materials, 8(2): (2015) 535-550.
DOI: 10.3390/ma8020535
Google Scholar
[38]
JP. Geng, KB. Tan, GR. Liu. Application of finite element analysis in implant dentistry: a review of the literature,. J Prosthet Dent 85(6), (2001) 585–98.
Google Scholar
[39]
CM. Jeong, AA. Caputo, RS. Wylie, SC. Son, YC. Jeon. Bicortically stabilized implant load transfer,. Int J Oral Maxillofac Implants 18(1), (2003) 59–65.
Google Scholar
[40]
PI. Brånemark, GA. Zarb, T. Albrektsson. Tissue-integrated prostheses: osseointegration in clinical dentistry,. Chicago: Quintessence (1985).
Google Scholar
[41]
AN. Natali, PG. Pavan, AL. Ruggero Evaluation of stress induced in peri-implant bone tissue by misfit in multi-implant prosthesis,. Dent Mater 22, (2006) 388–95.
DOI: 10.1016/j.dental.2005.08.001
Google Scholar
[42]
UR. Benzing, IH. Gall, IH. Weber. Biomechanical aspects of two different implant prosthetic concepts for edentulous maxillae,. Int J Oral Maxillfac Implants 10, (1995) 188–98.
DOI: 10.1097/00008505-199500440-00024
Google Scholar
[43]
S. Ishigaki, T. Nakano, S. Yamada, T. Nakamura, F. Takashima. Biomechanical stress in bone surrounding an implant under simulated chewing,. Clinical Oral Implants Research 14, (2003) 97-102.
DOI: 10.1034/j.1600-0501.2003.140113.x
Google Scholar
[44]
M. Sifi ; A. Merdji ; F. Benkhenafou ; D. Bennacer ; M. Benaissa ; N. Benseddiq. Comportementmécanique de la prothèse dentaire Sous l,effet des efforts masticatoires. Nature & Technology (2015).
Google Scholar
[45]
AL. Sabatini, T. Goswami. Hip implants VII: finite element analysis and optimization of cross-sections,. Mater Des 29, (2008) 438–1446.
DOI: 10.1016/j.matdes.2007.09.002
Google Scholar
[46]
I. Akpinar, F. Demire, L. Parnas, S. Sahin A comparison of stress and strain distribution characteristics of two different rigid implant designs for distal - extension fixed prostheses,. Quintessence Int 27, (1996) 11–7.
Google Scholar
[47]
B. Rangert, PHJ. Krogh , B. Langer, NV. Roekel Bending overload and implant fracture: A retrospective clinical analysis,. International Journal of Oral and Maxillofacial Implants 10, (1995) 326-334.
Google Scholar