Automatic Lung Nodules Detection Using a Modified YOLOv5

Article Preview

Abstract:

Lung cancer diagnosis involves a detection strategy to determine the specific location of the abnormality and its likelihood whether cancerous or non-cancerous. In existing methods such as Endobronchial ultrasound-guided transbronchial needle extraction (EBUS-TBNA) method requires specific equipment and trained operators. The limits in biomarker discovery begin with sample collection, transportation, representative tissue processing, reference standards, assay sensitivity and specificity. Liquid biopsy method requires tissue biopsy for initial diagnosis and may increase the likelihood of false negatives and false positives. To overcome these challenges, initially in this paper, three detectors are trained for nodule detection i.e. You Only Look Once version 3 (YOLOv3), YOLOv4 and YOLOv5. YOLOv3 achieved precision of 72%, recall of 75%, mean Average Precision (mAP) of 70%, F1 Score of 0.73 and Giga Floating-Point Operations (GFLOPs) of 30. In contrast, YOLOv4 achieved 85% precision, 70% recall, 80% mAP, F1 score of 0.76 and 65 GFLOPs. On the other hand, YOLOv5 achieved precision of 90%, recall of 80%, mAP of 85%, F1 Score of 0.85 and FLOPs of 217. These three detectors also faced few challenges like complexity, have high computation time and low performance. So, to overcome the problems of YOLO based methods, a modified YOLOv5 model has been proposed for the automatic detection of lung nodules in CT scans. Key modifications include enhanced feature extraction layers and customized anchor boxes tailored for small nodule detection. These modifications demonstrate the model's potential for reliable and efficient lung cancer screening, aligning with the manuscript's focus on advancing detection techniques through customized YOLOv5 enhancements. The modified model achieves a 90% precision, 85% recall, 88% mAP, 0.87 F1 score and 35.2 GFLOPs. These results represent an improvement in accuracy and increase in sensitivity compared to the standard YOLOv5 model. Also, GFLOPs have been reduced which demonstrates low computing requirement for the proposed model. The proposed model could be further used as clinical tool for lung cancer diagnosis.

You might also be interested in these eBooks

Info:

Pages:

47-62

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.H. Aung, A. Sivakumar, S.K. Gholami, S.P. Venkateswaran, Bapi Gorain, Md Shadab, An Overview of the Anatomy and Physiology of the Lung, Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer, Academic Press, 2019.

DOI: 10.1016/B978-0-12-815720-6.00001-0

Google Scholar

[2] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal Clinicians 68 (2018) 394-424

DOI: 10.3322/caac.21492

Google Scholar

[3] A.S. Tsao, G.V. Scagliotti, P.A. Bunn, D.P. Carbone, G.W. Warren, C. Bai, H.J. de Koning, A.U. Yousaf-Khan, A. McWilliams, M.S. Tsao, P.S. Adusumilli, R. Rami-Porta, H. Asamura, PE Van Schil, G.E. Darling, S.S. Ramalingam, D.R. Gomez, K.E. Rosenzweig, S. Zimmermann, S. Peters, Ou S-H Ignatius, T. Reungwetwattana, P.A. Jänne, T.S. Mok, H.A. Wakelee, R. Pirker, J. Mazières, J.R. Brahmer, Y. Zhou, R.S. Herbst, V.A. Papadimitrakopoulou, M.W. Redman, M.W. Wynes, D.R. Gandara, R.J. Kelly, F.R. Hirsch, H.I. Pass, Scientific advances in lung cancer 2015, Journal Thoracic Oncology 11(5) (2016) 613-638

DOI: 10.1016/j.jtho.2016.03.012

Google Scholar

[4] S.G. Spiro, J.C. Porter, Lung cancer-where are we today? Current advances in staging and nonsurgical treatment, American Journal Respiratory and Critical Care Medicine 166(9) (2002) 1166-1196

DOI: 10.1164/rccm.200202-070SO

Google Scholar

[5] R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022, CA: A Cancer Journal Clinicians 72(1) (2022) 7-33

DOI: 10.3322/caac.21708

Google Scholar

[6] Cancer Tomorrow. In: International agency for research on cancer, World Health Organization, GLOBOCAN 2018.

Google Scholar

[7] J.K. Leader, T.E. Warfel, C.R. Fuhrman, S.K. Golla, J.L. Weissfeld, R.S. Avila, W.D. Turner, B. Zheng, Pulmonary nodule detection with low-dose CT of the lung: Agreement among radiologists, American Journal Roentgenology 185(4) (2005) 973-978

DOI: 10.2214/AJR.04.1225

Google Scholar

[8] S.D. Bhatt, H.B. Soni, Image retrieval using bag-of-features for lung cancer classification, 6th International IEEE Conference on Inventive Computation Technologies (ICICT) (2021) 531-536

DOI: 10.1109/ICICT50816.2021.9358499

Google Scholar

[9] P. Huang, C.T. Lin, Y. Li, M.C. Tammemagi, M.V. Brock, S. Atkar-Khattra, Y. Xu, P. Hu, J.R. Mayo, H. Schmidt, M. Gingras, S. Pasian, L. Stewart, S. Tsai, J.M. Seely, D. Manos, P. Burrowes, R. Bhatia, M.S. Tsao, S. Lam, Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method, Lancet Digit Health 1(7) (2019) 353-362

DOI: 10.1016/S2589-7500(19)30159-1

Google Scholar

[10] S. Aslani, P. Alluri, E. Gudmundsson, E. Chandy, J. McCabe, A. Devaraj, C. Horst, S.M. Janes, R. Chakkara, A. Nair, D.C. Alexander, J. Jacob, Enhancing cancer prediction in challenging screen-detected incident lung nodules using time-series deep learning, Computer Vision and Pattern Recognition (CVPR) 116 (2024) 102399

DOI: 10.1016/j.compmedimag.2024.102399

Google Scholar

[11] F. Aziz, Endobronchial ultrasound-guided transbronchial needle aspiration for staging of lung cancer: a concise review, Transl Lung Cancer Res 1(3) (2012) 208-213. DOI: 10.3978/j.issn. 2218-6751.2012.09.08

DOI: 10.21037/tlcr-23-264

Google Scholar

[12] S. Chandrika, L. Yarmus, Recent developments in advanced diagnostic bronchoscopy, European Respiratory Review 29(157) (2020) 190184

DOI: 10.1183/16000617.0184-2019

Google Scholar

[13] E. Dama, T. Colangelo, E. Fina, M. Cremonesi, M. Kallikourdis, G. Veronesi, F. Bianchi, Biomarkers and lung cancer early detection: State of the art, Cancers (Basel) 13(15) (2021) 3919

DOI: 10.3390/cancers13153919

Google Scholar

[14] S. Das, M.K. Dey, R. Devireddy, M.R. Gartia, Biomarkers in cancer detection, diagnosis and prognosis, Sensors 24(1) (2024), 1-37

DOI: 10.3390/s24010037

Google Scholar

[15] F. Ren, Q. Fei, K. Qiu, Y. Zhang, H. Zhang, L. Sun, Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation, Journal of Experimental & Clinical Cancer Research 43(1) (2024) 1-26

DOI: 10.1186/s13046-024-03026-7

Google Scholar

[16] K. Yan, M. Bagheri, R.M. Summers, 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: A. Frangi, J. Schnabel, C. Davatzikos, C. Alberola-López, G. Fichtinger (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2018, Lecture Notes in Computer Science 11070 (2018) 511-519

DOI: 10.1007/978-3-030-00928-1_58

Google Scholar

[17] H. Peng, H. Sun, Y. Guo, 3D multi-scale deep convolutional neural networks for pulmonary nodule detection, PLoS ONE 16(1) (2021) 1-14

DOI: 10.1371/journal.pone.0244406

Google Scholar

[18] D. Ardila, A.P. Kiraly, S. Bharadwaj, B. Choi, J.J. Reicher, L. Peng, D. Tse, M. Etemadi, W. Ye, G. Corrado, D.P. Naidich, S. Shetty, End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography, Nature Medicine 25(6) (2019) 954-961

DOI: 10.1038/s41591-019-0447-x

Google Scholar

[19] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 770-778

DOI: 10.1109/CVPR.2016.90

Google Scholar

[20] S.D. Bhatt, H.B. Soni, H.R. Kher, T.D. Pawar, Automated system for lung nodule classification based on ResNet-50 and SVM, 3rd IEEE International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT-2022) (2022) 1-5

DOI: 10.1109/ICICT55121.2022.10064515

Google Scholar

[21] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualising image classification models and saliency maps, Computer Vision and Pattern Recognition (CVPR) (2013) 1–8

Google Scholar

[22] S.D. Bhatt, H.B. Soni, Improving classification accuracy of pulmonary nodules using simplified deep neural network, The Open Biomedical Engineering 15(Suppl2- M7) (2021) 180-189

DOI: 10.2174/1874120702115010180

Google Scholar

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, MobileNetv2: inverted residuals and linear bottlenecks, Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018) 4510-4520

DOI: 10.1109/CVPR.2018.00474

Google Scholar

[24] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 mb model size, Computer Vision and Pattern Recognition (CVPR) (2016) 1-13

DOI: 10.1109/cvpr.2016.284

Google Scholar

[25] H. Xie, D. Yang, N. Sun, Z. Chen, Y. Zhang, Automated pulmonary nodule detection in CT images using deep convolutional neural networks, Pattern Recognition 85 (2019) 109–119

DOI: 10.1016/j.patcog.2018.07.031

Google Scholar

[26] J. Ding, A. Li, Z. Hu, L. Wang, Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks, International Conference on Medical Image Computing and Computer-Assisted Intervention (2017) 559–567

DOI: 10.1007/978-3-319-66179-7_64

Google Scholar

[27] T. Wang, X. Zhang, L. Yuan, J. Feng, Few-shot adaptive Faster R-CNN, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019) 7166-7175

DOI: 10.1109/CVPR.2019.00734

Google Scholar

[28] K. Yan, X. Wang, L. Lu, R.M. Summers, DeepLesion: automated deep mining, categorization and detection of significant radiology image findings using large-scale clinical lesion annotations, Computer Vision and Pattern Recognition (CVPR) (2017) 1-9

DOI: 10.1117/1.jmi.5.3.036501

Google Scholar

[29] Y. Su, D. Li, X. Chen, Lung nodule detection based on faster R-CNN framework, Computer Methods and Programs in Biomedicine 200 (2021) 105866

DOI: 10.1016/j.cmpb.2020.105866

Google Scholar

[30] Z. Li, Y. Chen, G. Yu, Y. Deng, R-FCN++: towards accurate region-based fully convolutional networks for object detection, Proc. AAAI Conference on Artificial Intelligence 32(1) (2018) 7073-7080

DOI: 10.1609/aaai.v32i1.12265

Google Scholar

[31] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detection, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 779-788

DOI: 10.1109/CVPR.2016.91

Google Scholar

[32] J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) 6517-6525

DOI: 10.1109/CVPR.2017.690

Google Scholar

[33] Z. Li, L. Zhao, Xu Han, M. Pan, Lightweight ship detection methods based on YOLOv3 and denseNet, Mathematical Problems in Engineering (2020) 1-10

DOI: 10.1155/2020/4813183

Google Scholar

[34] Z. Zakria, J. Deng, R. Kumar, M.S. Khokhar, J. Cai, J. Kumar, Multiscale and direction target detecting in remote sensing images via modified YOLOv4, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 (2022) 1039-1048

DOI: 10.1109/JSTARS.2022.3140776

Google Scholar

[35] S.D. Bhatt, H.B. Soni, T.D. Pawar, H.R. Kher, Diagnosis of pulmonary nodules on CT images using YOLOv4, International Journal of Online and Biomedical Engineering (IJOE) 18(5) (2021) 131–146

DOI: 10.3991/ijoe.v18i05.29529

Google Scholar

[36] Z. Yu, L. Zhang, X. Gao, Y. Huang, X. Liu, Y. Zehua, Research on non-pooling YOLOv5 based algorithm for the recognition of randomly distributed multiple types of parts, Sensors 22(23) (2022) 9335

DOI: 10.3390/s22239335

Google Scholar

[37] J. Liu, L. Cao, O. Akin, Y. Tian, Accurate and robust pulmonary nodule detection by 3D feature pyramid network with self-supervised feature learning, Image and Video Processing (2019) 1-15

DOI: 10.3389/fradi.2022.1041518

Google Scholar

[38] Information on https://opencv.org

Google Scholar

[39] Information on https://pypi.org/project/labelImg

Google Scholar

[40] Information on https://www.tensorflow.org

Google Scholar

[41] Information on https://www.jetbrains.com/pycharm

Google Scholar