[1]
H.H. Aung, A. Sivakumar, S.K. Gholami, S.P. Venkateswaran, Bapi Gorain, Md Shadab, An Overview of the Anatomy and Physiology of the Lung, Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer, Academic Press, 2019.
DOI: 10.1016/B978-0-12-815720-6.00001-0
Google Scholar
[2]
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal Clinicians 68 (2018) 394-424
DOI: 10.3322/caac.21492
Google Scholar
[3]
A.S. Tsao, G.V. Scagliotti, P.A. Bunn, D.P. Carbone, G.W. Warren, C. Bai, H.J. de Koning, A.U. Yousaf-Khan, A. McWilliams, M.S. Tsao, P.S. Adusumilli, R. Rami-Porta, H. Asamura, PE Van Schil, G.E. Darling, S.S. Ramalingam, D.R. Gomez, K.E. Rosenzweig, S. Zimmermann, S. Peters, Ou S-H Ignatius, T. Reungwetwattana, P.A. Jänne, T.S. Mok, H.A. Wakelee, R. Pirker, J. Mazières, J.R. Brahmer, Y. Zhou, R.S. Herbst, V.A. Papadimitrakopoulou, M.W. Redman, M.W. Wynes, D.R. Gandara, R.J. Kelly, F.R. Hirsch, H.I. Pass, Scientific advances in lung cancer 2015, Journal Thoracic Oncology 11(5) (2016) 613-638
DOI: 10.1016/j.jtho.2016.03.012
Google Scholar
[4]
S.G. Spiro, J.C. Porter, Lung cancer-where are we today? Current advances in staging and nonsurgical treatment, American Journal Respiratory and Critical Care Medicine 166(9) (2002) 1166-1196
DOI: 10.1164/rccm.200202-070SO
Google Scholar
[5]
R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022, CA: A Cancer Journal Clinicians 72(1) (2022) 7-33
DOI: 10.3322/caac.21708
Google Scholar
[6]
Cancer Tomorrow. In: International agency for research on cancer, World Health Organization, GLOBOCAN 2018.
Google Scholar
[7]
J.K. Leader, T.E. Warfel, C.R. Fuhrman, S.K. Golla, J.L. Weissfeld, R.S. Avila, W.D. Turner, B. Zheng, Pulmonary nodule detection with low-dose CT of the lung: Agreement among radiologists, American Journal Roentgenology 185(4) (2005) 973-978
DOI: 10.2214/AJR.04.1225
Google Scholar
[8]
S.D. Bhatt, H.B. Soni, Image retrieval using bag-of-features for lung cancer classification, 6th International IEEE Conference on Inventive Computation Technologies (ICICT) (2021) 531-536
DOI: 10.1109/ICICT50816.2021.9358499
Google Scholar
[9]
P. Huang, C.T. Lin, Y. Li, M.C. Tammemagi, M.V. Brock, S. Atkar-Khattra, Y. Xu, P. Hu, J.R. Mayo, H. Schmidt, M. Gingras, S. Pasian, L. Stewart, S. Tsai, J.M. Seely, D. Manos, P. Burrowes, R. Bhatia, M.S. Tsao, S. Lam, Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method, Lancet Digit Health 1(7) (2019) 353-362
DOI: 10.1016/S2589-7500(19)30159-1
Google Scholar
[10]
S. Aslani, P. Alluri, E. Gudmundsson, E. Chandy, J. McCabe, A. Devaraj, C. Horst, S.M. Janes, R. Chakkara, A. Nair, D.C. Alexander, J. Jacob, Enhancing cancer prediction in challenging screen-detected incident lung nodules using time-series deep learning, Computer Vision and Pattern Recognition (CVPR) 116 (2024) 102399
DOI: 10.1016/j.compmedimag.2024.102399
Google Scholar
[11]
F. Aziz, Endobronchial ultrasound-guided transbronchial needle aspiration for staging of lung cancer: a concise review, Transl Lung Cancer Res 1(3) (2012) 208-213. DOI: 10.3978/j.issn. 2218-6751.2012.09.08
DOI: 10.21037/tlcr-23-264
Google Scholar
[12]
S. Chandrika, L. Yarmus, Recent developments in advanced diagnostic bronchoscopy, European Respiratory Review 29(157) (2020) 190184
DOI: 10.1183/16000617.0184-2019
Google Scholar
[13]
E. Dama, T. Colangelo, E. Fina, M. Cremonesi, M. Kallikourdis, G. Veronesi, F. Bianchi, Biomarkers and lung cancer early detection: State of the art, Cancers (Basel) 13(15) (2021) 3919
DOI: 10.3390/cancers13153919
Google Scholar
[14]
S. Das, M.K. Dey, R. Devireddy, M.R. Gartia, Biomarkers in cancer detection, diagnosis and prognosis, Sensors 24(1) (2024), 1-37
DOI: 10.3390/s24010037
Google Scholar
[15]
F. Ren, Q. Fei, K. Qiu, Y. Zhang, H. Zhang, L. Sun, Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation, Journal of Experimental & Clinical Cancer Research 43(1) (2024) 1-26
DOI: 10.1186/s13046-024-03026-7
Google Scholar
[16]
K. Yan, M. Bagheri, R.M. Summers, 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: A. Frangi, J. Schnabel, C. Davatzikos, C. Alberola-López, G. Fichtinger (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2018, Lecture Notes in Computer Science 11070 (2018) 511-519
DOI: 10.1007/978-3-030-00928-1_58
Google Scholar
[17]
H. Peng, H. Sun, Y. Guo, 3D multi-scale deep convolutional neural networks for pulmonary nodule detection, PLoS ONE 16(1) (2021) 1-14
DOI: 10.1371/journal.pone.0244406
Google Scholar
[18]
D. Ardila, A.P. Kiraly, S. Bharadwaj, B. Choi, J.J. Reicher, L. Peng, D. Tse, M. Etemadi, W. Ye, G. Corrado, D.P. Naidich, S. Shetty, End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography, Nature Medicine 25(6) (2019) 954-961
DOI: 10.1038/s41591-019-0447-x
Google Scholar
[19]
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 770-778
DOI: 10.1109/CVPR.2016.90
Google Scholar
[20]
S.D. Bhatt, H.B. Soni, H.R. Kher, T.D. Pawar, Automated system for lung nodule classification based on ResNet-50 and SVM, 3rd IEEE International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT-2022) (2022) 1-5
DOI: 10.1109/ICICT55121.2022.10064515
Google Scholar
[21]
K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualising image classification models and saliency maps, Computer Vision and Pattern Recognition (CVPR) (2013) 1–8
Google Scholar
[22]
S.D. Bhatt, H.B. Soni, Improving classification accuracy of pulmonary nodules using simplified deep neural network, The Open Biomedical Engineering 15(Suppl2- M7) (2021) 180-189
DOI: 10.2174/1874120702115010180
Google Scholar
[23]
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, MobileNetv2: inverted residuals and linear bottlenecks, Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018) 4510-4520
DOI: 10.1109/CVPR.2018.00474
Google Scholar
[24]
F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 mb model size, Computer Vision and Pattern Recognition (CVPR) (2016) 1-13
DOI: 10.1109/cvpr.2016.284
Google Scholar
[25]
H. Xie, D. Yang, N. Sun, Z. Chen, Y. Zhang, Automated pulmonary nodule detection in CT images using deep convolutional neural networks, Pattern Recognition 85 (2019) 109–119
DOI: 10.1016/j.patcog.2018.07.031
Google Scholar
[26]
J. Ding, A. Li, Z. Hu, L. Wang, Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks, International Conference on Medical Image Computing and Computer-Assisted Intervention (2017) 559–567
DOI: 10.1007/978-3-319-66179-7_64
Google Scholar
[27]
T. Wang, X. Zhang, L. Yuan, J. Feng, Few-shot adaptive Faster R-CNN, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019) 7166-7175
DOI: 10.1109/CVPR.2019.00734
Google Scholar
[28]
K. Yan, X. Wang, L. Lu, R.M. Summers, DeepLesion: automated deep mining, categorization and detection of significant radiology image findings using large-scale clinical lesion annotations, Computer Vision and Pattern Recognition (CVPR) (2017) 1-9
DOI: 10.1117/1.jmi.5.3.036501
Google Scholar
[29]
Y. Su, D. Li, X. Chen, Lung nodule detection based on faster R-CNN framework, Computer Methods and Programs in Biomedicine 200 (2021) 105866
DOI: 10.1016/j.cmpb.2020.105866
Google Scholar
[30]
Z. Li, Y. Chen, G. Yu, Y. Deng, R-FCN++: towards accurate region-based fully convolutional networks for object detection, Proc. AAAI Conference on Artificial Intelligence 32(1) (2018) 7073-7080
DOI: 10.1609/aaai.v32i1.12265
Google Scholar
[31]
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detection, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 779-788
DOI: 10.1109/CVPR.2016.91
Google Scholar
[32]
J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) 6517-6525
DOI: 10.1109/CVPR.2017.690
Google Scholar
[33]
Z. Li, L. Zhao, Xu Han, M. Pan, Lightweight ship detection methods based on YOLOv3 and denseNet, Mathematical Problems in Engineering (2020) 1-10
DOI: 10.1155/2020/4813183
Google Scholar
[34]
Z. Zakria, J. Deng, R. Kumar, M.S. Khokhar, J. Cai, J. Kumar, Multiscale and direction target detecting in remote sensing images via modified YOLOv4, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 (2022) 1039-1048
DOI: 10.1109/JSTARS.2022.3140776
Google Scholar
[35]
S.D. Bhatt, H.B. Soni, T.D. Pawar, H.R. Kher, Diagnosis of pulmonary nodules on CT images using YOLOv4, International Journal of Online and Biomedical Engineering (IJOE) 18(5) (2021) 131–146
DOI: 10.3991/ijoe.v18i05.29529
Google Scholar
[36]
Z. Yu, L. Zhang, X. Gao, Y. Huang, X. Liu, Y. Zehua, Research on non-pooling YOLOv5 based algorithm for the recognition of randomly distributed multiple types of parts, Sensors 22(23) (2022) 9335
DOI: 10.3390/s22239335
Google Scholar
[37]
J. Liu, L. Cao, O. Akin, Y. Tian, Accurate and robust pulmonary nodule detection by 3D feature pyramid network with self-supervised feature learning, Image and Video Processing (2019) 1-15
DOI: 10.3389/fradi.2022.1041518
Google Scholar
[38]
Information on https://opencv.org
Google Scholar
[39]
Information on https://pypi.org/project/labelImg
Google Scholar
[40]
Information on https://www.tensorflow.org
Google Scholar
[41]
Information on https://www.jetbrains.com/pycharm
Google Scholar