[1]
T. Pollock. Weight Loss with Magnesium Alloys, Science, 2010; 328: 986-987.
Google Scholar
[2]
R. Bonan, A. W Asgar. Biodegradable Stents - Where are we in 2009, US Cardiology 2009; 6 (1): 81-4.
DOI: 10.15420/usc.2009.6.1.81
Google Scholar
[3]
M. Staiger, A. Pietak, J. Huadamai, G. Dias. Magnesium and its Alloys as Orthopaedic Biomaterials: a review, Biomaterials, 2006; 27 (9): 1728-34.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[4]
F. Witte, J. Fischer, J. Nellesen, H. A Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen. In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys, Biomaterials, 2006; 27 (7): 1013-8.
DOI: 10.1016/j.biomaterials.2005.07.037
Google Scholar
[5]
B. A Saw. Corrosion Resistance of Magnesium Alloys, ASM Handbook, 2003; 13 (A).
Google Scholar
[6]
G. Song. Control of Biodegradation and Biocompatible Magnesium Alloys, Corrosion Science, 2007; 49 (4): 1696-1701.
DOI: 10.1016/j.corsci.2007.01.001
Google Scholar
[7]
F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen. In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005; 26 (17): 3557-63.
DOI: 10.1016/j.biomaterials.2004.09.049
Google Scholar
[8]
G. L Song, A. Atrens. Corrosion Mechanisms of Magnesium Alloys, Advanced Engineering Materials, 1999; 1 (1): 11-33.
Google Scholar
[9]
B. Hueblein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich. Biocorrosion of Magnesium Alloys: A New Principle in Cardiovascular Implant Technology, Heart, 2003; 89 (6): 651-6.
DOI: 10.1136/heart.89.6.651
Google Scholar
[10]
Y. Chen, Y. Song, S. Zhang, J. Li, C. Zhao, X. Zhang. Interaction between a High Purity Magnesium Surface and PCL and PLA Coatings During Dynamic Degradation, Biomedical Materials, 2011; 6 (2): 1-8.
DOI: 10.1088/1748-6041/6/2/025005
Google Scholar
[11]
R. Waksman, R. Pakala, P. K Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F. O Tio, E. Wittchow, S. Hartwig, C. Harder, R. Rohde, B. Heublein, A. Andreae, K. H Waldmann, A. Haverich. Safety and Efficacy of Bioasborbable Magnesium Alloy Stents in Porcine Coronary Arteries, Catheterization and Cardiovascular Interventions, 2006; 68 (4): 607-17.
DOI: 10.1002/ccd.20727
Google Scholar
[12]
M. Maeng, L. O Jensen, E. Falk, H. R Andersen, L. Thuesen. Negative Vascular Remodelling After Implantation of Bioabsorbable Magnesium Alloy Stents in Porcine Arteries: A Randomized Comparison with Bare-Metal Stent and Sirolimus-Eluting Stents, Heart, 2009; 95 (3): 241-6.
DOI: 10.1136/hrt.2007.139261
Google Scholar
[13]
R. Waksman, R. Erbel, C. Di Mario, J. Bartunek, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, M. Horrigan, C. Ilsley, D. Böse, H. Bonnier, J. Koolen, T. F Lüscher, N.J. Weissman. Early and Long-Term Intravascular Ultrasound and Angiographic Findings After Bioabsorbable Magnesium Stent Implantation in Human Coronary Arteries. JACCC Cardiovascular Intervention, 2009; 2 (4): 312-20.
DOI: 10.1016/j.jcin.2008.09.015
Google Scholar
[14]
R. Erbel, M. C Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F. R Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Böse, J. Koolen, T. F Lüscher, N. Weissman, R. Waksman. Temporary Scaffolding of Coronary Arteries with Bioabsorbable Magnesium Stents: A Prospective Non-Randomized Multi-Centre Trial. Lancet, 2007; 369 (9576): 1869-75.
DOI: 10.1016/s0140-6736(07)60853-8
Google Scholar
[15]
C. Castellani, R. A Lindtner, P. Hausbrandt, E. Tschegg, S. E Stanzl-Tschegg, G. Zanoni, S. Beck, A. M Weinberg. Bone-Implant Interface Strength and Osseointegration: Biodegradable Magnesium Alloys versus Standard Titanium Control. Acta Biomaterialia, 2011; 7 (1): 432-40.
DOI: 10.1016/j.actbio.2010.08.020
Google Scholar
[16]
G. D Zhang, J. J Huang, K. Yang, B. C Zhang, H. J Ai. Experimental Study of In Vivo Implantation of Magnesium Alloy at Early Stage. Acta Metallurgica Sinica, 2007; 43 (11): 1186-90.
Google Scholar
[17]
E. Zhang, L. Xu, G. Yu, F. Pan, K. Yang. In Vivo Evaluation of Biodegradable Magnesium Alloy Bone Implant in the First 6 Months Implantation. Journal of Biomedical Material Research: Part A, 2009; 90 (3): 882-93.
DOI: 10.1002/jbm.a.32132
Google Scholar
[18]
H. X Wang, S. K Guan, X. Wang, C. X Ren, L. G Wang. In Vitro Degradation and Mechanical Integrity of Mg-Zn-Ca Alloy Coated with Ca-Deficient Hydroxyapetite by the Pulse Electrodeposition Process. Acta Biomaterialia. 2010; 6 (5): 1743-8.
DOI: 10.1016/j.actbio.2009.12.009
Google Scholar
[19]
J. Zhang, F. S Pan, Z. Guo. Development of a T-Type Mg-Zn-Al Alloy: An Investigation of the Microstructure and Solidification Characteristics. Materials Science Forum, 2007; 546-549: 123-8.
DOI: 10.4028/www.scientific.net/msf.546-549.123
Google Scholar
[20]
L. Lin, F. Wang, L. Yang, L. Chen, L. Zheng. Solute Pre-Precipitation and Phase Transformation in an Mg-Zn-Gd Alloy. Advanced Materials Research, 2010; 152-153: 864-7.
DOI: 10.4028/www.scientific.net/amr.152-153.864
Google Scholar
[21]
Z. G Huan, M. A Leeflang, J. Zhou, L. E Fratila-Apatichei, J. Duszczyk. In Vitro Degradation Behaviour and Cytocompatibility of Mg-Zn-Zr Alloys. Journal of Material Science: Materials in Medicine, 2010; 21 (9): 2623-35.
DOI: 10.1007/s10856-010-4111-8
Google Scholar
[22]
J. Wang, L. Wang, S. Guan, S. Zhu, C. Ren, S. Hou. Microstructure and Corrosion Properties of as Sub-Rapid Solidification Mg-Zn-Y-Nd Alloy in Dynamic Simulated Body Fluid for Vascular Stent Application. Journal of Material Science: Materials in Medicine. 2010; 21 (7): 2001-8.
DOI: 10.1007/s10856-010-4063-z
Google Scholar
[23]
W. D Callister Jr. Materials Science and Engineering: An Introduction, 7th Edition. John Wiley & Sons. (2006).
Google Scholar
[24]
D. R Askeland, P. P Phule. The Science and Engineering of Materials. Cengage Learning, 5th Edition. Thomson. (2006).
Google Scholar
[25]
F. Witte, N. Hort, C. Vogt, S. Cohen, K. Kainer, R. Willumeit, F. Feyerabend. Degradable Biomaterials Based on Magnesium. Current Opinion in Solid State and Material Science, 2008; 12 (5-6): 63-72.
DOI: 10.1016/j.cossms.2009.04.001
Google Scholar
[26]
R. W Revie. Ulig's Corrosion Handbook. 2nd Edition. NY, USA: John Wiley & Sons, (2000).
Google Scholar
[27]
M. Ahamed. Toxic Response of Nickel Nanoparticles in Human Lung Epithelial A549 Cells. Toxicology In Vivo. 2011, 25(4): 930-6.
DOI: 10.1016/j.tiv.2011.02.015
Google Scholar
[28]
P. Viswanadham, P. Singh. Failure Modes and Mechanisms in Electronic Packages. NY, USA: Chapman & Hall, (1998).
Google Scholar
[29]
R. W Murray, J. E Hillis. Magnesium Finishing: Chemical Treatment and Coating Practices, SAE Technical Paper Series #900791, Detroit (1990).
DOI: 10.4271/900791
Google Scholar
[30]
J. E Hillis, R. W Murray. Finishing Alternatives for High Purity Magnesium Alloys, SDCE 14th International Die Casting Congress and Exposition, Toronto 1987, Paper # G-T87-003.
Google Scholar
[31]
A. L Olsen. Corrosion Characteristics of New Magnesium Alloys, Translation of Paper presented at the Bauteil '91, DVM Berlin 1991, 1-21.
Google Scholar
[32]
J. Hill, H. Petrucci. General Chemistry: An Integrated Approach. 2nd edition. Upper Saddle River, NJ: Prentice Hall. (1999).
Google Scholar
[33]
G. Tortora, S. Grabkowski. Principles of Anatomy and Physiology, 10th edition, Wiley, (2002).
Google Scholar
[34]
A. Roy, D. Fleming, S. Gordon. Effect of Chloride Concentration and pH on Pitting Corrosion of Waster Package Container Materials, 190th Meeting of the Electrochemical Society, INC. December 1996, Lawrence Livermore National Laboratory.
Google Scholar
[35]
A. Davenport, A. J Aldykiewics, H. S Isaacs. XANES Studies of Chromate Replacements in Oxide Films of Aluminium. In X-Ray Methods in Corrosion and Interfacial Chemistry. 1992: The Electrochemical Society.
Google Scholar
[36]
M. Kendig, S. Jeanjaquet, H. Jensen. Non-Chromate-Inhibiting Pigments for Aluminium 2024-T3. Electrochemical Society. 1995, Chicago, IL, USA: Electrochemical Society.
Google Scholar
[37]
C. S Jeffcoate, H. S Isaacs, A. J Aldykiewicz Jr, M. P Ryan. Journal of the Electrochemical Society, 2000; 147 (2): 540-7.
Google Scholar
[38]
B. Craig, D. Anderson. Handbook of Corrosion Data, ASM International. 2nd Edition, 1995; 998.
Google Scholar
[39]
Z. Yang, Z. P Li, J. X Zhang, G. W Lorimer, J. Robson. Review on Research and Development of Magnesium Alloys. Acta Metallurgica Sinica. 2008; 21 (5): 313-28.
DOI: 10.1016/s1006-7191(08)60054-x
Google Scholar
[40]
G. L Makar, J. Kruger. Corrosion of Magnesium, International Materials Reviews, 1993, 38 (3): 138-53.
Google Scholar
[41]
R. W Revie, H. Uhlig. Corrosion and Corrosion Control. 2008. Wiley-Interscience.
Google Scholar
[42]
J. A Crowley, D. A Traynor, D. C Weatherburn. Enzymes and proteins containing manganese: an overview. 1999, 209-257. In A. Sigel, H. Sigel (ed. ), Manganese and its role in biological processes. Metal ions in biological systems, vol. 37. Marcel Dekker, New York, N. Y.
DOI: 10.1201/9781482289893-18
Google Scholar
[43]
C. L Keen, J. L Ensunsa, M. S Clegg. Manganese metabolism in animals and humans including the toxicity of manganese, 1999, 90-114. In A. Sigel, H. Sigel (ed. ), Manganese and its role in biological processes. Metal ions in biological systems, vol. 37. Marcel Dekker, New York, N. Y.
DOI: 10.1201/9781482289893-14
Google Scholar
[44]
V. C Culotta, M. Yang, M. Hall. Manganese Transport and Trafficking: Lessons Learned from Saccharomyces cerecvisiae. Eukaryotic Cell. 2005; 4 (7): 1159-65.
DOI: 10.1128/ec.4.7.1159-1165.2005
Google Scholar
[45]
G. Cypher. Copper and Human Health and Safety, International Copper Association Limited, 260 Madison Avenue, New York, NY 10016, USA.
Google Scholar
[46]
D. Strausak, J. F Mercer, H. H Dieter, W. Stremmel, G. Multhaup. Copper in Disorders with Neurological Symptoms: Alzheimer's, Menkes, and Wilson Disease. Brain Research Bulletin, 2001; 55 (2): 175-8.
DOI: 10.1016/s0361-9230(01)00454-3
Google Scholar
[47]
N. Leone, D. Courbon, P. Ducimetiere, M. Zureik. Zinc, Copper, and Magnesium, and Risks for All-Cause, Cancer, and Cardiovascular Mortality. Epidemiology, 2006; 17 (3): 308-14.
DOI: 10.1097/01.ede.0000209454.41466.b7
Google Scholar
[48]
C. Suman. Creep of Diecast Magnesium Alloys AZ91D and AM60B. SAE Technical Paper No. 910416, Warrendale, PA, Society of Automotive Engineering, (1991).
DOI: 10.4271/910416
Google Scholar
[49]
P. A Mackowiak, S. S Wasserman, M. M Levine. A critical appraisal of 98. 6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA. 1992; 268 (12): 1578–80.
DOI: 10.1001/jama.1992.03490120092034
Google Scholar
[50]
W. A Banks, A. J Kastin. Aluminium-induced neurotoxicity: alterations in membrane function at the blood-brain barrier. Neuroscience Biobehaviour Review, 1989; 13 (1): 47–53.
DOI: 10.1016/s0149-7634(89)80051-x
Google Scholar
[51]
P. D Darbre. Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. Journal of Applied Toxicology, 2006; 26 (3): 191-7.
DOI: 10.1002/jat.1135
Google Scholar
[52]
V. Rondeau, H. Jacqmin-Gadda, D. Commenges, C. Helmer, J. F Dartigues. Aluminium and Silica in Drinking Water and the Risk of Alzheimer's Disease or Cognitive Decline: Findings From 15-Year Follow-up of the PAQUID Cohort. American Journal of Epidemiology, 2008; 169 (4): 489–96.
DOI: 10.1093/aje/kwn348
Google Scholar
[53]
S. Yumoto, S. Kakimi, A. Ohsaki, A. Ishikawa. Demonstration of aluminium in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer's disease. Journal of Inorganic Biochemistry, 2009; 103 (11): 1579-84.
DOI: 10.1016/j.jinorgbio.2009.07.023
Google Scholar
[54]
F. W Bach, M. Schaper, C. Jaschik. Influence of Lithium on hcp Magnesium Alloys, Material Science Forum, 2003 (419-422); 1037.
DOI: 10.4028/www.scientific.net/msf.419-422.1037
Google Scholar
[55]
J. Y Rho, R. B Ashman, C. H Turner. Young's Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements. Journal of Biomechanics, 1993; 26 (2): 111-9.
DOI: 10.1016/0021-9290(93)90042-d
Google Scholar
[56]
C. K Seal, K. Vince, M. A Hodgson. Biodegradable Surgical Implants Based on Magnesium Alloys - A Review of Current Research. Material Science and Engineering, 2009; 4: 1-5.
DOI: 10.1088/1757-899x/4/1/012011
Google Scholar
[57]
B. Zberg, P. J Uggowitzer, J. F Loffler. MgZnCa Glasses without Clinically Observable Hydrogen Evolution for Biodegradable Implants. Nature Materials-Letters, 2009; 8: 887- 91.
DOI: 10.1038/nmat2542
Google Scholar
[58]
M. R Broadley, P. J White, J. P Hammond, I. Zelko, A. Lux. Zinc in plants, New Phytologist, 2007; 173 (4): 677-702.
DOI: 10.1111/j.1469-8137.2007.01996.x
Google Scholar
[59]
A. S Prasad. Zinc in human health: effect of zinc on immune cells, Molecular Medicine, 2008; 14 (5-6): 353-7.
Google Scholar
[60]
B. Sugarman. Zinc and infection, Review of Infectious Disease. 1983, 5 (1): 137-47.
Google Scholar
[61]
F. A Cotton, G. Wilkinson. Advanced Inorganic Chemistry, Wiley, 1999, 6th Edition, 625-9.
Google Scholar
[62]
E. G Brandt, M. Hellgren, T. Brinck, T. Bergman, O. Edholm. Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Physical Chemistry Chemical Physics, 2009; 11 (6): 975–83.
DOI: 10.1039/b815482a
Google Scholar
[63]
D. N Bothwell, E. A Mair, B. B Cable. Chronic Ingestion of a Zinc-Based Penny, Paediatrics, 2003; 111 (3): 689-91.
DOI: 10.1542/peds.111.3.689
Google Scholar
[64]
J. C Gao, S. Wu, L. Qiao, Y. Wang. Corrosion Behaviour of Mg and Mg-Zn Alloys in Simulated Body Fluid, Transactions of Nonferrous Metals Society of China, 2008; 18 (3): 588-592.
DOI: 10.1016/s1003-6326(08)60102-8
Google Scholar
[65]
E. McCafferty. Introduction to Corrosion Science. Springer, USA. 2010, 1st Edition.
Google Scholar
[66]
G. Song, A. Atrens, D. St John, J. Nairn, Y. Li. The electrochemical corrosion of pure magnesium in 1N NaCl. Corrosion Science. 1997; 39 (5): 855-75.
DOI: 10.1016/s0010-938x(96)00172-2
Google Scholar
[67]
H. A Robinson, Trans. Electrochem. Soc. 1958, 90, 485.
Google Scholar
[68]
L. Wang, B. P Zhang, T. Shinohara. Corrosion Behaviour of AZ91Magnesium Alloy in Dilute NaCl Solutions. Materials and Design, 2010; 31 (2): 857-863.
DOI: 10.1016/j.matdes.2009.07.049
Google Scholar
[69]
G. Song, A. Atrens, Y. Li, B. Zhang. Negative Difference Effect of Magnesium. Proc. Corrosion and Prevention, Australasian Corrosion Association, Inc., 1997, p.38.
Google Scholar
[70]
R. Baboian. Corrosion Tests and Standards: Application and Interpretation, ASTM International. 2005, 2nd Edition; 20.
Google Scholar
[71]
M. Orazem, B. Tribollet. Electrochemical Impedance Spectroscopy. Wiley-Interscience, USA, (2008).
Google Scholar
[72]
ASTM Standard G61, Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys, Annual book of ASTM Standards, Philadelphia, PA: ASTM.
DOI: 10.1520/g0061-86r03
Google Scholar
[73]
R. Kossowsky. Surface Modification Engineering: Fundamental Aspects. Volume 1, CRC Press, 1989, p.389.
Google Scholar
[74]
A. Hamdy, E. El-Shenawy, T. El-Bitar. Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of Some Niobium Bearing Stainless Steels in 3. 5% NaCl. International Journal of Electrochemical Science, 2006; 1: 171-180.
DOI: 10.1016/j.matlet.2006.10.043
Google Scholar
[75]
W. D Müller, M. L Nascimento, M. Zeddies, M. Córsico, L. M Gassa, M.A. F Lorenzo de Mele. Magnesium and its Alloys as Degradable Biomaterials. Corrosion Studies Using Potentiodynamic and EIS Electrochemical Techniques. Materials Research, 2007; 10 (1): 5-10.
DOI: 10.1590/s1516-14392007000100003
Google Scholar
[76]
B. D Ratner, A. S Hoffman, F. J Schoen, J. E Lemons. Biomaterials Science: An Introduction to Materials in Science. Academic Press, 2004, 2nd Edition; 851.
Google Scholar
[77]
R. E White, J. O'M Bockris, B. E Conway. Electrochemical Aspects of Stress Corrosion Cracking. Modern Aspects of Electrochemistry. 1995; 27: 234.
Google Scholar
[78]
J. O'M Bockris, A. Reddy. Modern Electrochemistry 2B. Springer, USA, (2000).
Google Scholar
[79]
N. Hassiotis, G. Petropoulos. Influence of Surface Roughness on Corrosion Resistance of Turned Carbon Steel Parts. International Journal of Machining and Machinability of Materials. 2006; 1: 202-212.
DOI: 10.1504/ijmmm.2006.011067
Google Scholar
[80]
D. Landolt. Corrosion and Surface Chemistry of Materials, CRC Press, USA, (2007).
Google Scholar
[81]
R. Williams, D. Williams. Albumin Adsorption on Metal Surfaces. Biomaterials, 1988; 9: 206-212.
DOI: 10.1016/0142-9612(88)90085-3
Google Scholar
[82]
D. Williams, I. Askill, R. Smith. Protein Adsorption and Desorption Phenomena on Clean Metal Surfaces. Journal Biomedical Materials Research, 1985; 19: 313-320.
DOI: 10.1002/jbm.820190312
Google Scholar