Biomimetic Design of Haute-Temperature Lightweight Ceramics: A Review

Article Preview

Abstract:

Functionally graded materials (FGMs) are composite materials in which the properties are varied continuously from one face to the other via a compositional gradient. Functionally graded structures can be found in nature as evident in the cross-sections of bone, teeth and many plant stems, for example bamboo. Initially conceived for the purpose of thermal barrier coatings on spaceplanes, FGMs are finding more applications in other fields such as in polymers, biomedical and semiconductors. In this review, we take a look at two kinds of ceramics, carbon-carbon and fused silica, their properties and processing methods, as well as the possibility of incorporating them in a functionally graded material for use in high-temperature applications. Both carbon and fused silica have similarly low thermal expansion coefficients which will (1) allow the degree of thermal mismatch between the graded layers to be minimized and; (2) reduce the thermomechanical shock that will occur in the presence of a steep temperature gradient.

You might also be interested in these eBooks

Info:

Pages:

73-93

Citation:

Online since:

May 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Houchin: The Rise and Fall of Dyna-Soar: A History of Air Force Hypersonic R&D. (1995), Auburn University.

Google Scholar

[2] J.J. Bertin and R.M. Cummings: Progress in Aerospace Sciences, Vol. 39, No. 6-7 (2003), pp.511-536.

Google Scholar

[3] R. Grant: Is The Spaceplane Dead?, in Air Force Magazine, (2001), Air Force Association: Arlington, VA.

Google Scholar

[4] M. Niino and S. Maeda: Recent Development Status of Functionally Gradient Materials ISIJ International (Previously: Transactions of the Iron and Steel Institute of Japan).

Google Scholar

[5] H.W. Hald: Safety Aspects of CMC Materials and Hot Structures, in Joint ESA-NASA Space-Flight Safety Conference, edited by B. Battrick, C. Preyssi, (2002), European Space Agency, p.127.

Google Scholar

[6] T.K. Laux et al.: Materials Science Forum, (1999), No. 308-311, (Functionally Graded Materials 1998), pp.428-433.

Google Scholar

[7] R. Salvatore et al.: Ceramic/ceramic shell tile thermal protection system and method, USPTO, Editor. 15 Dec 1987, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration: U. S.

Google Scholar

[8] E.A. Thornton: Journal of Aircraft, (1992), Vol. 29, No. 3, pp.485-498.

Google Scholar

[9] M.L. Blosser: Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle, (1996), NASA Langley Technical Report Server.

Google Scholar

[10] D.E. Myers et al.: Parametric weight comparison of current and proposed thermal protection system (TPS) concepts in 33rd AIAA Thermophysics Conference (1999). Norfolk, VA, US.

DOI: 10.2514/6.1999-3459

Google Scholar

[11] H. Kelly and M.L. Blosser: Active cooling from the sixties to NASP. in Current Technology for Thermal Protection Systems Workshop, (1992), Hampton, VA: AA(Analytical Services and Materials, Inc, Hampton, VA. ).

Google Scholar

[12] H. Goldstein: Reusable thermal protection system development: A prospective. in Current Technology for Thermal Protection Systems, (1992), NASA Conference Publication CP 3157.

Google Scholar

[13] C. Vix-Guterl, J. Lahaye, and P. Ehrburger: Carbon, (1993), Vol. 31, No. 4, pp.629-635.

DOI: 10.1016/0008-6223(93)90118-t

Google Scholar

[14] X.Q. Cao, R. Vassen, and D. Stoever: Journal of the European Ceramic Society, 2004, Vol. 24, No. 1, pp.1-10.

Google Scholar

[15] F. Cernuschi, et al.: Journal of Thermal Spray Technology, (1999), Vol. 8, No. 1, pp.102-109.

Google Scholar

[16] R. Vassen et al.: New materials for advanced thermal barrier coatings. in 6th Liége Conference on Materials for Advanced Power Engineering, (1998), Universite de Liége, Belgium.

Google Scholar

[17] L.J. Korb et al.: National SAMPE Symposium and Exhibition, [Proceedings], (1981), 26 (Mater. Process Appl. -Land, Sea, Air, Space), pp.232-49.

Google Scholar

[18] D.M. Curry: Space Shuttle Orbiter thermal protection system design and flight experience, (1993), National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX.: Texas.

DOI: 10.2172/6637640

Google Scholar

[19] NASA/Rockwell, Orbiter Thermal Protection System, U.S. Centennial of Flight Commission.

Google Scholar

[20] G.M. Savage: Metals and Materials, (1988), No. 4, p.544.

Google Scholar

[21] Fitzer, E. and M. Heine: Proceedings of CHEMRAWN III, (1984), pp.1-37.

Google Scholar

[22] Fitzer, E.: Carbon, (1987), Vol. 25, pp.163-190.

Google Scholar

[23] G.M. Jenkins and K. Kawamura: Polymeric carbons - carbon fibre, glass, and char. (1976), Cambridge University Press, p.157.

Google Scholar

[24] N. Hayashi: Applications of Carbon Fibre, (1984), p.137.

Google Scholar

[25] G. Savage: Introduction, in Carbon-Carbon Composites, (1993), Chapman and Hall: London.

Google Scholar

[26] G. Savage: Applications of Carbon-Carbon Composites, in Carbon-Carbon Composites, (1993), Chapman & Hall, London, pp.323-357.

DOI: 10.1007/978-94-011-1586-5_9

Google Scholar

[27] G. Savage: Gas Phase Impregnation/Densification of Carbon-carbon and other Hightemperature Composite Materials, in Carbon-Carbon composites, (1993), Chapman & Hall, London, pp.85-113.

DOI: 10.1007/978-94-011-1586-5_3

Google Scholar

[28] D.M. Curry and E.W. Stephens: Reinforced carbon-carbon oxidation behavior in convective and radiative environments., in Sci. Tech. Aerosp. Rep., (1978), Lyndon B. Johnson Space Cent., NASA, Houston, TX, USA. p.31.

Google Scholar

[29] D.M. Curry and C.N. Webster: National SAMPE Symposium and Exhibition, [Proceedings], (1979), Vol. 24, No. 2, (Enigma Eighties: Environ., Econ., Energy, Book 2), pp.1524-39.

Google Scholar

[30] J. Dumoulin: Thermal Protection System, in NASA Kennedy Space Center, Edited by J. Ryba, (1994), NASA Kennedy Space Center.

Google Scholar

[31] T.R. Wright, D.E. Kizer and W.F. Simmons: Space Congr., 4th, Cocoa Beach, Fla., (1967), Vol. 15, No. 45, pp.15-57.

Google Scholar

[32] N.S. Jacobson, and D.M. Curry: Carbon, (2006), Vol. 44, No. 7, pp.1142-1150.

Google Scholar

[33] E. Fitzer, E. and L.M. Manocha: Oxidation and Oxidation Protection of Carbon/Carbon Composites, in Carbon Reinforcements and Carbon/Carbon Composites, Edited by R.C. Messerschmidt, (1997), Springer-Verlag Berlin Heidelberg, Germany, pp.281-308.

DOI: 10.1007/978-3-642-58745-0_9

Google Scholar

[34] W.M. Clift, K.F. McCarty, and D.R. Boehme: Surface and Coatings Technology, 1990. 42 No. 1), pp.29-40.

Google Scholar

[35] D. McKee: Chemistry and Physics of Carbon, edited by T.P. Walker, Vol. 1, (1981), New York, Marcel Dekker New York Pub.

Google Scholar

[36] Thomas, J.: Chemistry and Physics of Carbon ed. W. PL. Vol. 1, 1965, New York, Marcel Dekker New York Pub, 1.

Google Scholar

[37] NASA: Thermal Protection Materials, 2008, NASA Ames Research Center.

Google Scholar

[38] Westwood, M.E., et al.: Journal of Materials Science, (1996), Vol. 31, No. 6, pp.1389-1397.

Google Scholar

[39] Sheehan, J.E.: Carbon-carbon Materials and composites, edited by J.D. Buckley and D.D. Edie, (1992), NASA.

Google Scholar

[40] D.C. Jia: Journal of Advanced Materials, 2006, Vol. 38, No. 3, pp.21-6.

Google Scholar

[41] M.B. Volf: Technical Glasses, (1961), London-Prague, Pitman and Sons.

Google Scholar

[42] A.H. Shinohara et al.: Jpn. J. Appli. Phys., (1999), Vol. 38, pp.136-139.

Google Scholar

[43] D.B. Leiser, American Ceramic Society Bulletin (2004. 83 No. 8), pp.44-47.

Google Scholar

[44] M. Tomozawa, D-L. Kim, D-L., V. Lo: Journal of Non-Crystalline Solids, (2001), Vol. 296 No. 1-2, pp.102-106.

Google Scholar

[45] O. Yong-Taeg, S. Fujino, and K. Morinaga: Science and Technology of Advanced Materials, (2002), Vol. 3, No. 4, pp.297-301.

Google Scholar

[46] E.M. Rabinovich, D.W. Johnson, J.R. MacChesney and E.M. Vogel: Journal of the American Ceramic Society, (1983), Vol. 66, No. 10, pp.683-688.

Google Scholar

[47] F. Skaupy and G. Weissenber: Article of Vitreous Quartz and Process for Producing and Working It, USPTO, Editor. (1942), U. S.

Google Scholar

[48] J. Harris: State of Radome Technology - 1974. in Twelfth Symposium on Electromagnetic Windows, (1974), Atlanta, GA, Georgia Institute of Technology.

Google Scholar

[49] J.D. Mackenzie: Ultrastructure Processing of Ceramics, Glasses and Composites, ed. L.L. Hench, Ulrich, D.R. (1984), New York, Wiley. P. 15-26.

Google Scholar

[50] H. Murata et al.: Drying and sintering of bulk silica gels. Journal of Sol-Gel Science and Technology, (1997), Vol. 8, No. 1, pp.397-402.

DOI: 10.1007/bf02436872

Google Scholar

[51] R.O. Rustum: Gel Route to Homogeneous Glass Preparation. Journal of the American Ceramic Society, (1969), Vol. 52, No. 6, pp.344-344.

DOI: 10.1111/j.1151-2916.1969.tb11945.x

Google Scholar

[52] G.J. Mccarthy and R. Roy: Journal of the American Ceramic Society, (1971), Vol. 54, No. 12, pp.639-640.

Google Scholar

[53] R. Roy: Science, (1987), Vol. 238, No. 4834, pp.1664-1669.

Google Scholar

[54] H. Dislich: Angewandte Chemie International Edition in English, (1971), Vol. 10, No. 6, pp.363-70.

Google Scholar

[55] B. Yoldas, Journal of Materials Science, (1977), Vol. 12, No. 6, pp.1203-1208.

Google Scholar

[56] D.P. Mukherjee: Journal of Non-Crystalline Solids, (1980), Vol. 42, No. 11, pp.477-88.

Google Scholar

[57] J. Zarzycki: Journal of Sol-Gel Science and Technology, (1997), Vol. 8, No. 1, pp.17-22.

Google Scholar

[58] S. Sakka: Gel Method for Making Glass. Treatise on Materials Science and Technology. No. 22. (1982), New York, Academic Press.

Google Scholar

[59] T. Adachi and S. Sakka: Journal of Materials Science, (1987), Vol. 22, No. 12, pp.4407-4410.

Google Scholar

[60] K. Susa et al.: Electronics Letters, (1982), Vol. 18, No. 12, pp.499-500.

Google Scholar

[61] L.C. Klein: Annual Review of Materials Science, (1993), Vol. 23, No. 1, pp.437-452.

Google Scholar

[62] D.W. Johnson Jr et al.: Journal of the American Ceramic Society, (1983), Vol. 66, No. 10, pp.688-693.

Google Scholar

[63] J.W. Fleming, W.C. Hasz and I.G. Schwarts: Am Ceram. Soc. Bull., (1982), Vol. 61, No. 8, p.819.

Google Scholar

[64] R.D. Shoup: Controlled Pore Silica Bodies Gelled from Silica Sol-Alkali Silicate Mixtures. Colloid and Interface Science, edited by M. Kerker, No. 3, (1976), New York, Academic Press.

DOI: 10.1016/b978-0-12-404503-3.50010-0

Google Scholar

[65] S. Sakka and K. Kamiya: Preparation of Compact Solids from Metal Alkoxides. in International Symposium of Factors in Densification and Sintering of Oxide and Non-oxide Ceramics, (1978), Tokyo, Japan, Tokyo Institute of Technology.

Google Scholar

[66] M. Yamane, S. Aso and T. Sakaino: Journal of Materials Science, (1978), Vol. 13, pp.865-70.

Google Scholar

[67] M. Yamane, S. Aso, S. Okano and T. Sakaino: Journal of Materials Science, (1979), Vol. 14, pp.607-11.

Google Scholar

[68] L. Klein and G.J. Garvey: Journal of Non-Crystalline Solids, (1982), Vol. 48, pp.97-104.

Google Scholar

[69] J. Zarzycki, M. Prassas and J. Phalippou: Journal of Materials Science, (1982), Vol. 17, pp.3371-79.

Google Scholar

[70] L. Klein and G.J. Garvey: Drying and Firing Monolithic Shapes from Sol-Gels. Ultrastructuring Processing of Ceramics, Glasses and Composites, edited by L.L. Hench, Ulrich, D.R. (1984), New York, John Wiley & Sons.

Google Scholar

[71] M. Prassas and L.L. Hench: Physical Chemical Factors in Sol-Gel Processing. Ultrastructure Processing of Ceramics, Glasses and Composites. (1984), New York, Wiley & Sons.

Google Scholar

[72] C.J. Brinker and G.W. Scherer: Relationships Between Sol-to-Gel and Gel-to-Glass Conversions, edited by L.L. Hench, Ulrich, D.R. (1984), New York, Wiley & Sons.

Google Scholar

[73] J. Zarzycki: Monolithic Xero- and Aero-Gels for Gel-Glass Processes. Ultrastructure Processing of Ceramics, Glasses and Composites, edited by L.L. Hench, Ulrich, D.R. (1984), New York, Wiley & Sons.

Google Scholar

[74] J. Phalippou, T. Woigner and J. Zarzycki: Behavior of Monolithic Silica Aerogels at Temperatures Above 1000oC, Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by L.L. Hench, Ulrich, D.R. (1984), New York, Wiley & Sons.

Google Scholar

[75] D.L. Griscom: Journal of the Ceramic Society of Japan, (1991), Vol. 99, pp.923-942.

Google Scholar

[76] B. Kearton, M. Shahriari and J.M. Eichenholz: Fiber-Optic Sensors, Optics breathe new life into oxygen sensing, (2007), PennWell Corporation.

Google Scholar

[77] C. Brinker and G.W. Scherer: Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, (1990), San Diego, Academic Press.

Google Scholar

[78] G.W. Scherer: Journal of the American Ceramic Society, (1990), Vol. 73 No. 1, pp.3-14.

Google Scholar

[79] G.W. Scherer: Journal of non-crystalline solids, (1989), Vol. 113, No. 2-3, pp.107-118.

Google Scholar

[80] G.W. Scherer: J. Non-Cryst. Solids, (1989), Vol. 121, No. 11, pp.104-109.

Google Scholar

[81] G.W. Scherer: R.M. Swiatek, Journal of non-crystalline solids, (1989), Vol. 113, No. 2-3, pp.119-129.

Google Scholar

[82] T. Woignier et al.: Journal of non-crystalline solids, (1992), No. 147-148, pp.672-680.

Google Scholar

[83] T. Woignier, G.W. Scherer, and A. Alaoui: Journal of Sol-Gel Science and Technology, (1994), Vol. 3, No. 2, pp.141-150.

Google Scholar

[84] S. Hæreid M. -A. Einarsrud, and G.W. Scherer: Journal of Sol-Gel Science and Technology, (1994) Vol. 3, No. 3, pp.199-204.

Google Scholar

[85] M.A. Einarsrud et al.: Journal of Non-Crystalline Solids, (2001), Vol. 285, No. 1-3, pp.1-7.

Google Scholar

[86] G.W. Scherer et al.: Journal of non-crystalline solids, (1996), Vol. 202, No. 1-2, pp.42-52.

Google Scholar

[87] D. Kicevic and M. Gasic: Sintering and Devitrification of Slip-Cast Fused Silica. in 5th International Round Table Conference on Sintering, (1981), Yugoslavia, Elsevier Scientific Publishing Company.

Google Scholar

[88] R.M. German: Introduction to Sintering, in Sintering Theory and Practice, (1996), John Wiley & Sons, Inc., New York. pp.1-20.

Google Scholar

[89] R.D. Shoup W.J. Wein: Low temperature production of high purity fused silica (1977), Corning Glass Works, U. S.

Google Scholar

[90] T. Vasilos: Hot Pressing of Fused Silica. Journal of the American Ceramic Society, (1960), Vol. 43, No. 10, pp.517-519.

DOI: 10.1111/j.1151-2916.1960.tb13606.x

Google Scholar

[91] G.J. McCarthy, R. Roy, and J.M. McKay: Journal of the American Ceramic Society, (1971), Vol. 54, No. 12, pp.637-638.

Google Scholar

[92] O. Lame et al.: In situ Microtomography Study of Metallic Powder Sintering. (2006), ESRF, Grenoble.

Google Scholar

[93] M.D. Sacks and Tseng, T-Y, Journal of the American Ceramic Society, (1984), Vol. 67, No. 8, pp.532-537.

Google Scholar

[94] Stöber, W., A. Fink, and E. Bohn: Journal of Colloid and Interface Science, (1968), Vol. 26, No. 1, pp.62-69.

Google Scholar

[95] T. Matsoukas and E. Gulari: Journal of Colloid and Interface Science, (1988), Vol. 124, No. 1, pp.252-261.

Google Scholar

[96] Brinker, C.J., et al.: Journal of Non-Crystalline Solids, (1982), Vol. 48, No. 1, pp.47-64.

Google Scholar

[97] M. Nogami, and Y. Moriya: Journal of Non-Crystalline Solids, (1980), Vol. 37, No. 2, p.191201.

Google Scholar

[98] R.K. Iler: The Chemistry of Silica, (1979), New York, Wiley & Sons.

Google Scholar

[99] C. Payne, Applications of Colloidal Silica, Past, Present and Future. The Colloid Chemistry of Silica, ed. H.E. Bergna. (1994), American Ceramic Society. 581.

DOI: 10.1021/ba-1994-0234.ch029

Google Scholar

[100] D.L. Green, M.T. Harris, J.S. Lin and Y-F Lam.: Ceramic Nanomaterials and Nanotechnology, (2002), pp.33-58.

Google Scholar

[101] D.L. Green et al.: Journal of Colloid and Interface Science, (2003), Vol. 266, No. 2, p.346358.

Google Scholar

[102] J. Hlavac: Glass Technology, in The Technology of Glass and Ceramics, An Introduction. (1983), Elsevier Scientific Publishing Company, Prague, pp.55-220.

Google Scholar

[103] A.K. Kumar: Journal of the American Ceramic Society, (1996), Vol. 79, No. 9, p.23752378.

Google Scholar

[104] M. Koizumi: FGM activities in Japan. Composites Part B, Engineering, (1997), Vol. 28, No. 1-2, pp.1-4.

Google Scholar

[105] B. -L. Wang, Y. -W. Mai, and X. -H. Zhang: Acta Materialia, (2004), Vol. 52, No. 17, p.49614972.

Google Scholar

[106] A. Mortensen and S. Suresh: Int. Mater. Rev., (1995), Vol. 40, No. 6, p.239.

Google Scholar

[107] M. Hamdi Abd Shukor, R.R. Ghahnavyeh and B. Saw: Development of Functional Graded Materials By Combustion Synthesis Of Powder Mixtures In Ti-C-Al System, (2008), University of Malaya.

Google Scholar

[108] A.H. Wu et al.: Materials Chemistry and Physics, (2005), Vol. 91, No. 2-3, pp.545-550.

Google Scholar

[109] Y. Miyamoto et al.: Introduction, in Functionally Graded Materials, Design, Processing and Applications, (1999), Kluwer Academic Publishers, Massachusetts. pp.1-8.

Google Scholar

[110] Y. Miyamoto et al.: Functionally Graded Materials, (1999), Springer.

Google Scholar

[111] J. Aboudi, M.J. Pindera and S.M. Arnold: Higher-Order Theory for Functionally Graded Materials, (2001), Wyle Information Systems, LLC.

Google Scholar

[112] A.J. Ruys, et al., Functionally graded electrical/thermal ceramic systems, Journal of the European Ceramic Society, (2001), Vol. 21, No. 10-11, p.2025-(2029).

DOI: 10.1016/s0955-2219(01)00165-0

Google Scholar

[113] B. Kieback, A. Neubrand, and H. Riedel: Materials Science and Engineering A, (2003), Vol. 362, No. 1-2, pp.81-106.

Google Scholar

[114] Y. -G. Jung, et al.: Journal of Materials Science, (1997), Vol. 32, No. 14, pp.3841-3850.

Google Scholar

[115] L. Zhang et al.: Journal of Materials Science Letters, (2000), Vol. 19, pp.955-958.

Google Scholar

[116] M. Willert-Porada, T. Gerdes and R. Borchert: FGM'94. in 3rd Symposium on Structural and Functional Gradient Materials, (1994).

Google Scholar

[117] V. Richter: FGM'94. in 3rd International Symposium on Structural and Functional Gradient Materials, (1994).

Google Scholar

[118] M. Omori et al.: FGM '94. in 3rd Intl Symposium on Structural and Functional Gradient Materials, (1994), Lausanne.

Google Scholar

[119] M. Tokita, Functionally Graded Materials in 5th International Symposium on FGM. (1998), Dresden, Germany.

Google Scholar

[120] M. Sasaki and T. Hirai, J. Ceram. Soc. Jpn, (1991), Vol. 99, pp.970-80.

Google Scholar

[121] R. Watanabe, A. Kawasaki, H. Takahashi: Mechanics and Mechanisms of Damage in Composites and Multi-Materials, ESISII, ed. D. Baptiste. (1991, London, Mechanical Engineering Publications. 285-9.

Google Scholar

[122] J.T. DeMasi-Marcin, K.D. Sheffler, and S. Bose: Journal of Engineering for Gas Turbines and Power, (1990), Vol. 112, No. 4, pp.521-526.

DOI: 10.1115/1.2906198

Google Scholar

[123] C.C. Berndt and H. Herman: Thin Solid Films, (1983), Vol. 108, No. 4, pp.427-437.

Google Scholar

[124] R.A. Miller and C.E. Lowell: Thin Solid Films, 1982, Vol. 95, No. 3, pp.265-273.

Google Scholar

[125] R.A. Miller and C.C. Berndt: Thin Solid Films, (1984), Vol. 119, No. 2, pp.195-202.

Google Scholar

[126] A. Kawasaki and R. Watanabe: Engineering Fracture Mechanics, (2002), Vol. 69, No. 14-16, pp.1713-1728.

Google Scholar

[127] S. Gill and T. Clyne: Metallurgical and Materials Transactions B, (1990), Vol. 21 No. 2, pp.377-385.

Google Scholar

[128] A.G. Evans, G.B. Crumley, and R.E. Demaray: Oxidation of Metals, (1983), Vol. 20 No. 5, pp.193-216.

Google Scholar

[129] M. Ferrari and L. Lutterotti: Journal of Engineering Mechanics, (1992), Vol. 118, No. 9, p.1928-(1938).

Google Scholar

[130] R. Kawasaki et al.: (1987), Vol. 51, No. 6, pp.525-529.

Google Scholar

[131] K.A. Khor and Y.W. Gu: Thin Solid Films, (2000), Vol. 372, No. 1-2, pp.104-113.

Google Scholar

[132] Crivelli-Visconti, I., Cooper, G.A., Mechanical Properties of a New Carbon Fibre Material, Nature, 1969, 221(5182): pp.754-755.

DOI: 10.1038/221754a0

Google Scholar

[133] Sambell, R.A.J., Bowen, D.H., Phillips, D.C., Carbon Fibre Composites with Ceramic and Glass Matrices, Journal of Materials Science, 1972. 7(6): pp.663-675.

DOI: 10.1007/bf00549378

Google Scholar

[134] Prewo, K.M., Fibre reinforced glasses and glass-ceramics, in Glasses and Glass-ceramics, M.H. Lewis, Editor. 1989, Chapman and Hall: New York. P. 336-368.

DOI: 10.1007/978-94-009-0817-8_10

Google Scholar

[135] Lewis, M.H. Ceramic Matrix Composites, in Mechanical Behaviour of Materials at High Temperatures. 1996. Dordrecht: Kluwer Academic Publishers.

Google Scholar

[136] Lehman, R.L., Glass and Glass-Ceramic Matrix Fibre Composites, in Handbook on Continuous Fiber-Reinforced Ceramic Matrix Composites, S.K.E. -R. R.L. Lehman, J.B. Wachtman, Editor. 1996, Purdue University Press: West Lafayette. pp.527-545.

DOI: 10.1007/0-387-23986-3_19

Google Scholar

[137] Boccacini, A.R., Glass and Glass-Ceramic Composites, in Handbook of Ceramic Composites, N.P. Bansal, Editor. 2005, Kluwer Academic Publishers: Boston. pp.459-484.

Google Scholar

[138] Hillig, W.B., Strength and Toughness of Ceramic Matrix Composites. Annual Review of Materials Science, 1987. 17(1): pp.341-383.

DOI: 10.1146/annurev.ms.17.080187.002013

Google Scholar

[139] Levitt, S.R., High-Strength Graphite Fibre/Lithium Aluminosilicate Composites. Journal of Materials Science, 1973. 8(6): pp.793-806.

DOI: 10.1007/bf02397909

Google Scholar

[140] Prewo, K.M., A compliant, high failure strain, fibre-reinforced glass-matrix composite. Journal of Materials Science, 1982. 17(12): pp.3549-3563.

DOI: 10.1007/bf00752199

Google Scholar

[141] Marshall, D.B., Evans, A.G., Failure Mechanisms in Ceramic-Fiber/Ceramic-Matrix Composites. Journal of the American Ceramic Society, 1985. 68(5): pp.225-231.

DOI: 10.1111/j.1151-2916.1985.tb15313.x

Google Scholar

[142] Sambell, R.A.J., Briggs, A., Philips, D.C., Bowen, D.H., Carbon Fiber Composites with Ceramic and Glass Matrices, Part 2 - Continuous Fibers. Journal of Materials Science, 1972. 7(6): pp.676-81.

DOI: 10.1007/bf00549379

Google Scholar

[143] Philips, D.C., Interfacial Bonding and the Toughness of Carbon Fibre Reinforced Glass and Glass-Ceramics. Journal of Materials Science, 1974. 9(11): pp.1847-54.

DOI: 10.1007/bf00541756

Google Scholar

[144] Philips, D.C., The Fracture Energy of Carbon-Fiber Reinforced Glass. Journal of Material Science, 1972. 7(10): pp.1175-91.

Google Scholar

[145] Tressler, R.E., Recent Developments in Fibers and Interphases for High Temperature Ceramic Matrix Composites. Composites Part A: Applied Science and Manufacturing, 1999. 30(4): pp.429-437.

DOI: 10.1016/s1359-835x(98)00131-6

Google Scholar

[146] Boccaccini, A.R., Continuous Fibre Reinforced Glass and Glass-Ceramic Matrix Composites, in Handbook of Ceramic Composites, N.P. Bansal, Editor. 2005, Kluwer Academic Publishers: New York. pp.461-484.

DOI: 10.1007/0-387-23986-3_19

Google Scholar

[147] Lange, F.F., Powder Processing Science and Technology for Increased Reliability. Journal of the American Ceramic Society, 1989. 72(1): pp.3-15.

Google Scholar

[148] Sigmund, W.M., Bell, Nelson S., Bergström, Lennart, Novel Powder-Processing Methods for Advanced Ceramics. Journal of the American Ceramic Society, 2000. 83(7): p.15571574.

DOI: 10.1111/j.1151-2916.2000.tb01432.x

Google Scholar