Biomimetic Functionally Graded Materials: Synthesis by Impeller-Dry-Blending

Abstract:

Article Preview

Functionally graded materials (FGMs) can be found naturally in many biological structures, for example bamboo and the mollusc shell. They are defined as having a compositional or microstructural gradient, for example the gradation in fibre content in bamboo stems. A continuous bulk functionally graded material has the potential to be an ideal orthopaedic implant for load bearing applications. Due to the fabrication complexities involved in the production of these continuous bulk functionally graded materials, commercialisation and fabrication are still proving to be a challenge to researchers worldwide. This paper presents an overview of the redesigned novel commercially viable process known as the Impeller-Dry-Blending (IDB) process. Results presented in this paper of fabricated functionally graded materials illustrate the potential of IDB to produce continuous bulk functionally graded materials consisting of either compositional or porosity concentration changes. The successful fabrication of these continuous bulk functionally graded materials at such a low cost clearly demonstrates the commercial viability of the IDB process.

Info:

Pages:

37-49

DOI:

10.4028/www.scientific.net/JBBTE.3.37

Citation:

D.T. Chavara et al., "Biomimetic Functionally Graded Materials: Synthesis by Impeller-Dry-Blending", Journal of Biomimetics, Biomaterials and Tissue Engineering, Vol. 3, pp. 37-49, 2009

Online since:

July 2009

Export:

Price:

$35.00

[1] Y. Miyamoto., W. A. Kaysser., B. H. Rabin., A. Kawasaki., and R. G. Ford., editors: Functionally Graded Materials: Design, Processing and Applications. Boston: Kluwer Academic Publishers, (1999) (330 pp. ).

DOI: 10.1007/978-1-4615-5301-4_6

[2] J. C. Koch: The laws of bone architecture. American Journal of Anatomy 21(2), (1917), pp.177-298.

[3] S. M. Kurtz., and J. N. Devine.: PEEK biomaterials in trauma, orthopaedic, and spinal implants. Biomaterials 28, (2007), 4845-4869.

DOI: 10.1016/j.biomaterials.2007.07.013

[4] J. Huang, L. DiSilvio, M. Wang, I. Rehman, and W. B. C. Ohtsuki: Evaluation of in vitro bioactivity and biocompatibility of Bioglass®-reinforced polyethylene composite Journal of Materials Science: Materials in Medicine 8(12), (1997), 809-813.

[5] S. Yu, K. P. Hariram, R. Kumar, P. Cheang, and K. A. Khor: In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials 26(15), (2005), pp.2343-52.

DOI: 10.1016/j.biomaterials.2004.07.028

[6] J. Ni, and M. Wang: In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Materials Science and Engineering: C 20(1-2), (2002), pp.101-09.

[7] C. V. Wilmowsky, E. Vairaktaris, D. Pohle, T. Rechtenwald, R. Lutz, H. Münstedt, G. Koller, M. Schmidt, F. W. Neukam, K. A. Schlegel, and E. Nkenke: Effects of bioactive glass and beta-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro. Journal of Biomedical Materials Research Part A 87A(4), (2008).

DOI: 10.1002/jbm.a.31822

[8] D. F. Williams, A. McNamara, and R. M. Turner: Potential of polyetheretherketone(PEEK) and carbon-fibre-reinforced PEEK in medical applications. . Journal of Material Science Letters 6: 188, (1987), 188-190.

DOI: 10.1007/bf01728981

[9] J. K. Fink: Poly(aryl ether ketone)s High performance polymers. Norwich, NY, USA: William Andrew Inc., (2008). pp.209-36.

DOI: 10.1016/b978-081551580-7.50007-9

[10] H. Yildiz, S. -K. Ha, and F. -K. Chang: Composite hip prosthesis design. I. Analysis. Journal of Biomedical Materials Research 39(1), (1998), pp.92-101.

[11] K. S. Katti: Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces 39(3), (2004), pp.133-42.

DOI: 10.1016/j.colsurfb.2003.12.002

[12] L. L. Hench, and O. Andersson: Bioactive Glasses. In: Hench Larry L WJ An Introduction to Bioceramics.: World Scientific Publishing Company, Singapore, (1993). pp.41-62.

DOI: 10.1142/9789814317351_0003

[13] H. Oonishi, L. L. Hench, J. Wilson, F. Sugihara, E. Tsuji, M. Matsuura, S. Kin, T. Yamamoto, and S. Mizokawa: Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite. Journal of Biomedical Materials Research 51(1), (2000).

DOI: 10.1002/(sici)1097-4636(200007)51:1<37::aid-jbm6>3.0.co;2-t

[14] U. Schulz, M. Peters, F. W. Bach, and G. Tegeder: Graded coatings for thermal, wear and corrosion barriers. Materials Science and Engineering A 362(1-2), (2003), pp.61-80.

DOI: 10.1016/s0921-5093(03)00579-3

[15] D. E. Wolfe, M. B. Movchan, and J. Singh: Architecture of functionally graded ceramic/metallic coatings by electron beam-physical vapor deposition, Orlando, FL, USA, (1997). pp.93-110.

[16] T. Hirai, and M. Sasaki: Vapor - deposited functionally gradient materials. JSME International Journal, Series 1: Solid Mechanics, Strength of Materials 34(2), (1991), p.12329.

DOI: 10.1299/jsmea1988.34.2_123

[17] S. Kirihara, Y. Tomota, and T. Tsujimoto: Application of an intermetallic compound Ti5Si3 to functionally graded materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing 239-240, (1997).

DOI: 10.1016/s0921-5093(97)00636-9

[18] K. Atarashiya: Diffusion joining of two blocks of magnesia via FGM layer. Materials Science Forum 308-311, (1999), pp.319-22.

DOI: 10.4028/www.scientific.net/msf.308-311.319

[19] K. M. Jasim, R. D. Rawlings, and D. R. F. West: Metal-ceramic functionally gradient material produced by laser processing. Journal of Materials Science 28(10), (1993), pp.2820-26.

DOI: 10.1007/bf00356225

[20] H. Takebe, T. Teshima, M. Nakashima, and K. Morinaga: Powder processing technique for development of zirconia-nickel functionally gradient materials. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan 100(1160), (1992).

DOI: 10.2109/jcersj.100.387

[21] D. P. Miller, J. J. Lannutti, and R. D. Noebe: Fabrication and properties of functionally graded NiAl/Al2O3 composites. Journal of Materials Research 8(8), (1993), pp.2004-13.

DOI: 10.1557/jmr.1993.2004

[22] A. Kawasaki, and R. Watanabe: Thermal fracture behavior of metal/ceramic functionally graded materials. Engineering Fracture Mechanics 69(14-16), (2002), pp.1713-28.

DOI: 10.1016/s0013-7944(02)00054-1

[23] K. Matsuda, Y. Watanabe, K. Yamagiwa, and Y. Fukui: Characterization of Al3Fe particle within Al-Al3Fe functionally graded material fabricated by semi-solid forming, Beijing, China, (2005). pp.1503-06.

DOI: 10.4028/0-87849-960-1.1503

[24] Z. Yang, L. Zhang, and Z. Yang: Fabrication of W-Mo functionally graded materials with smooth changes of composition by Co-sedimentation, Kunming, China, (2002). pp.485-88.

DOI: 10.4028/www.scientific.net/kem.224-226.485

[25] S. Put, J. Vleugels, and O. Van der Biest: Microstructural engineering of functionally graded materials by electrophoretic deposition. Journal of Materials Processing Technology 143-144(1), (2003), pp.572-77.

DOI: 10.1016/s0924-0136(03)00370-4

[26] C. P. Robertson: Functionally Graded Materals Produced through Controlled Powder Mixing. Honours Thesis: Engineering. Supervisor A.J. Ruys, (1998), University of Sydney, Sydney.

[27] P. Merry: Metal - Ceramic Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2000), University of Sydney, Sydney.

[28] W. K. L. Wong: Metal - Ceramic Functionally Gradient Materails (A Granular Flow Research). Honours Thesis: Engineering. Supervisor A.J. Ruys, (2001), University of Sydney, Sydney.

[29] R. Hokin: Powder Mixing Machine. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2003), University of Sydney, Sydney.

[30] B. Sutton: Ceramic - Metal Functionally Gradient Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2004), University of Sydney, Sydney.

[31] D. Sun: Metal-Ceramic Functionally Graded Materials. Masters Thesis: Engineering. Supervisor A.J. Ruys, (2002), University of Sydney, Sydney.

[32] K. M. A. Ng: Ceramic - Metal Functionally Gradient Materials (A Granular Flow Research). Honours Thesis: Engineering. Supervisor A.J. Ruys, (2003), University of Sydney, Sydney.

[33] M. S. H. Wu: Functionally Gradient Materails (A Granular Flow Research). Honours Thesis: Engineering. Supervisor A.J. Ruys, (2002), University of Sydney, Sydney.

[34] C. Young: Metal-Ceramic Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2005), University of Sydney, Sydney.

[35] T. Hunyh: Metal-Polymer, Functionally Gradient Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2005), University of Sydney, Sydney.

[36] M. Sheekey: Metal - Ceramic Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2004), University of Sydney, Sydney.

[37] J. Riley: Hydrostatic Shock Forming of Ceramic - Metal Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2003), University of Sydney, Sydney.

[38] P. Rousis: Explosive Shock Forming of Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2003), University of Sydney, Sydney.

[39] A. J. Ruys, E. B. Popov, D. Sun, J. J. Russell, and C. C. J. Murray: Functionally graded electrical/thermal ceramic systems. Journal of the European Ceramic Society 21(10-11), (2001), pp.2025-29.

DOI: 10.1016/s0955-2219(01)00165-0

[40] M. Se: Metal - Ceramic Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2003), University of Sydney, Sydney.

[41] C. K. Liew, M. Viedt, D. T. Chavara, A. J. Ruys, C. Young, and M. McCreery: MetalPolymer Functionally Graded Materials for Removing Guided Wave Reflections at Beam End Boundaries. pp.539-544 in Proceedings of the 5th Australasian Congress on Applied Mechanics. Brisbane, Australia, (2007).

[42] A. Garland: Polymer-Metal Functionally Gradient Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2006), University of Sydney, Sydney.

[43] M. McCreery.: Aluminium-Polycarbonate Functionally Gradient Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2006), University of Sydney, Sydney.

[44] J. Mikl: Metal-Ceramic Functionally Gradient Materials (Sintering Studies). Honours Thesis: Engineering. Supervisor A.J. Ruys, (2007), University of Sydney, Sydney.

[45] D. T. Chavara, and A. J. Ruys: Development of the impeller-dry-blending process for the fabrication of metal-ceramic functionally graded materials. Ceramic Engineering and Science Proceedings 27(3), (2007), pp.311-19.

DOI: 10.1002/9780470291320.ch30

[46] D. T. Chavara, and A. J. Ruys: Continuous Bulk Functionally Graded Metal-Ceramic Composites 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, OH, United States: American Institute of Aeronautics and Astronautics Inc., Reston, VA 20191-4344, United States, (2008).

DOI: 10.2514/6.2008-2568

[47] N. Hansen, S. D. Muller, and P. Koumoutsakos: Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation 11(1), (2003), pp.1-18.

DOI: 10.1162/106365603321828970

In order to see related information, you need to Login.