[1]
Y. Miyamoto., W. A. Kaysser., B. H. Rabin., A. Kawasaki., and R. G. Ford., editors: Functionally Graded Materials: Design, Processing and Applications. Boston: Kluwer Academic Publishers, (1999) (330 pp. ).
DOI: 10.1007/978-1-4615-5301-4_7
Google Scholar
[2]
J. C. Koch: The laws of bone architecture. American Journal of Anatomy 21(2), (1917), pp.177-298.
Google Scholar
[3]
S. M. Kurtz., and J. N. Devine.: PEEK biomaterials in trauma, orthopaedic, and spinal implants. Biomaterials 28, (2007), 4845-4869.
DOI: 10.1016/j.biomaterials.2007.07.013
Google Scholar
[4]
J. Huang, L. DiSilvio, M. Wang, I. Rehman, and W. B. C. Ohtsuki: Evaluation of in vitro bioactivity and biocompatibility of Bioglass®-reinforced polyethylene composite Journal of Materials Science: Materials in Medicine 8(12), (1997), 809-813.
Google Scholar
[5]
S. Yu, K. P. Hariram, R. Kumar, P. Cheang, and K. A. Khor: In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials 26(15), (2005), pp.2343-52.
DOI: 10.1016/j.biomaterials.2004.07.028
Google Scholar
[6]
J. Ni, and M. Wang: In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Materials Science and Engineering: C 20(1-2), (2002), pp.101-09.
DOI: 10.1016/s0928-4931(02)00019-x
Google Scholar
[7]
C. V. Wilmowsky, E. Vairaktaris, D. Pohle, T. Rechtenwald, R. Lutz, H. Münstedt, G. Koller, M. Schmidt, F. W. Neukam, K. A. Schlegel, and E. Nkenke: Effects of bioactive glass and beta-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro. Journal of Biomedical Materials Research Part A 87A(4), (2008).
DOI: 10.1002/jbm.a.31822
Google Scholar
[8]
D. F. Williams, A. McNamara, and R. M. Turner: Potential of polyetheretherketone(PEEK) and carbon-fibre-reinforced PEEK in medical applications. . Journal of Material Science Letters 6: 188, (1987), 188-190.
DOI: 10.1007/bf01728981
Google Scholar
[9]
J. K. Fink: Poly(aryl ether ketone)s High performance polymers. Norwich, NY, USA: William Andrew Inc., (2008). pp.209-36.
DOI: 10.1016/b978-081551580-7.50007-9
Google Scholar
[10]
H. Yildiz, S. -K. Ha, and F. -K. Chang: Composite hip prosthesis design. I. Analysis. Journal of Biomedical Materials Research 39(1), (1998), pp.92-101.
DOI: 10.1002/(sici)1097-4636(199801)39:1<92::aid-jbm12>3.0.co;2-q
Google Scholar
[11]
K. S. Katti: Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces 39(3), (2004), pp.133-42.
DOI: 10.1016/j.colsurfb.2003.12.002
Google Scholar
[12]
L. L. Hench, and O. Andersson: Bioactive Glasses. In: Hench Larry L WJ An Introduction to Bioceramics.: World Scientific Publishing Company, Singapore, (1993). pp.41-62.
DOI: 10.1142/9789814317351_0003
Google Scholar
[13]
H. Oonishi, L. L. Hench, J. Wilson, F. Sugihara, E. Tsuji, M. Matsuura, S. Kin, T. Yamamoto, and S. Mizokawa: Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite. Journal of Biomedical Materials Research 51(1), (2000).
DOI: 10.1002/(sici)1097-4636(200007)51:1<37::aid-jbm6>3.0.co;2-t
Google Scholar
[14]
U. Schulz, M. Peters, F. W. Bach, and G. Tegeder: Graded coatings for thermal, wear and corrosion barriers. Materials Science and Engineering A 362(1-2), (2003), pp.61-80.
DOI: 10.1016/s0921-5093(03)00579-3
Google Scholar
[15]
D. E. Wolfe, M. B. Movchan, and J. Singh: Architecture of functionally graded ceramic/metallic coatings by electron beam-physical vapor deposition, Orlando, FL, USA, (1997). pp.93-110.
Google Scholar
[16]
T. Hirai, and M. Sasaki: Vapor - deposited functionally gradient materials. JSME International Journal, Series 1: Solid Mechanics, Strength of Materials 34(2), (1991), p.12329.
DOI: 10.1299/jsmea1988.34.2_123
Google Scholar
[17]
S. Kirihara, Y. Tomota, and T. Tsujimoto: Application of an intermetallic compound Ti5Si3 to functionally graded materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing 239-240, (1997).
DOI: 10.1016/s0921-5093(97)00636-9
Google Scholar
[18]
K. Atarashiya: Diffusion joining of two blocks of magnesia via FGM layer. Materials Science Forum 308-311, (1999), pp.319-22.
DOI: 10.4028/www.scientific.net/msf.308-311.319
Google Scholar
[19]
K. M. Jasim, R. D. Rawlings, and D. R. F. West: Metal-ceramic functionally gradient material produced by laser processing. Journal of Materials Science 28(10), (1993), pp.2820-26.
DOI: 10.1007/bf00356225
Google Scholar
[20]
H. Takebe, T. Teshima, M. Nakashima, and K. Morinaga: Powder processing technique for development of zirconia-nickel functionally gradient materials. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan 100(1160), (1992).
DOI: 10.2109/jcersj.100.387
Google Scholar
[21]
D. P. Miller, J. J. Lannutti, and R. D. Noebe: Fabrication and properties of functionally graded NiAl/Al2O3 composites. Journal of Materials Research 8(8), (1993), pp.2004-13.
DOI: 10.1557/jmr.1993.2004
Google Scholar
[22]
A. Kawasaki, and R. Watanabe: Thermal fracture behavior of metal/ceramic functionally graded materials. Engineering Fracture Mechanics 69(14-16), (2002), pp.1713-28.
DOI: 10.1016/s0013-7944(02)00054-1
Google Scholar
[23]
K. Matsuda, Y. Watanabe, K. Yamagiwa, and Y. Fukui: Characterization of Al3Fe particle within Al-Al3Fe functionally graded material fabricated by semi-solid forming, Beijing, China, (2005). pp.1503-06.
DOI: 10.4028/www.scientific.net/msf.475-479.1503
Google Scholar
[24]
Z. Yang, L. Zhang, and Z. Yang: Fabrication of W-Mo functionally graded materials with smooth changes of composition by Co-sedimentation, Kunming, China, (2002). pp.485-88.
DOI: 10.4028/www.scientific.net/kem.224-226.485
Google Scholar
[25]
S. Put, J. Vleugels, and O. Van der Biest: Microstructural engineering of functionally graded materials by electrophoretic deposition. Journal of Materials Processing Technology 143-144(1), (2003), pp.572-77.
DOI: 10.1016/s0924-0136(03)00370-4
Google Scholar
[26]
C. P. Robertson: Functionally Graded Materals Produced through Controlled Powder Mixing. Honours Thesis: Engineering. Supervisor A.J. Ruys, (1998), University of Sydney, Sydney.
Google Scholar
[27]
P. Merry: Metal - Ceramic Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2000), University of Sydney, Sydney.
Google Scholar
[28]
W. K. L. Wong: Metal - Ceramic Functionally Gradient Materails (A Granular Flow Research). Honours Thesis: Engineering. Supervisor A.J. Ruys, (2001), University of Sydney, Sydney.
Google Scholar
[29]
R. Hokin: Powder Mixing Machine. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2003), University of Sydney, Sydney.
Google Scholar
[30]
B. Sutton: Ceramic - Metal Functionally Gradient Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2004), University of Sydney, Sydney.
Google Scholar
[31]
D. Sun: Metal-Ceramic Functionally Graded Materials. Masters Thesis: Engineering. Supervisor A.J. Ruys, (2002), University of Sydney, Sydney.
Google Scholar
[32]
K. M. A. Ng: Ceramic - Metal Functionally Gradient Materials (A Granular Flow Research). Honours Thesis: Engineering. Supervisor A.J. Ruys, (2003), University of Sydney, Sydney.
Google Scholar
[33]
M. S. H. Wu: Functionally Gradient Materails (A Granular Flow Research). Honours Thesis: Engineering. Supervisor A.J. Ruys, (2002), University of Sydney, Sydney.
Google Scholar
[34]
C. Young: Metal-Ceramic Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2005), University of Sydney, Sydney.
Google Scholar
[35]
T. Hunyh: Metal-Polymer, Functionally Gradient Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2005), University of Sydney, Sydney.
Google Scholar
[36]
M. Sheekey: Metal - Ceramic Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2004), University of Sydney, Sydney.
Google Scholar
[37]
J. Riley: Hydrostatic Shock Forming of Ceramic - Metal Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2003), University of Sydney, Sydney.
Google Scholar
[38]
P. Rousis: Explosive Shock Forming of Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2003), University of Sydney, Sydney.
Google Scholar
[39]
A. J. Ruys, E. B. Popov, D. Sun, J. J. Russell, and C. C. J. Murray: Functionally graded electrical/thermal ceramic systems. Journal of the European Ceramic Society 21(10-11), (2001), pp.2025-29.
DOI: 10.1016/s0955-2219(01)00165-0
Google Scholar
[40]
M. Se: Metal - Ceramic Functionally Graded Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2003), University of Sydney, Sydney.
Google Scholar
[41]
C. K. Liew, M. Viedt, D. T. Chavara, A. J. Ruys, C. Young, and M. McCreery: MetalPolymer Functionally Graded Materials for Removing Guided Wave Reflections at Beam End Boundaries. pp.539-544 in Proceedings of the 5th Australasian Congress on Applied Mechanics. Brisbane, Australia, (2007).
Google Scholar
[42]
A. Garland: Polymer-Metal Functionally Gradient Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2006), University of Sydney, Sydney.
Google Scholar
[43]
M. McCreery.: Aluminium-Polycarbonate Functionally Gradient Materials. Honours Thesis: Engineering. Supervisor A.J. Ruys, (2006), University of Sydney, Sydney.
Google Scholar
[44]
J. Mikl: Metal-Ceramic Functionally Gradient Materials (Sintering Studies). Honours Thesis: Engineering. Supervisor A.J. Ruys, (2007), University of Sydney, Sydney.
Google Scholar
[45]
D. T. Chavara, and A. J. Ruys: Development of the impeller-dry-blending process for the fabrication of metal-ceramic functionally graded materials. Ceramic Engineering and Science Proceedings 27(3), (2007), pp.311-19.
DOI: 10.1002/9780470291320.ch30
Google Scholar
[46]
D. T. Chavara, and A. J. Ruys: Continuous Bulk Functionally Graded Metal-Ceramic Composites 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, OH, United States: American Institute of Aeronautics and Astronautics Inc., Reston, VA 20191-4344, United States, (2008).
DOI: 10.2514/6.2008-2568
Google Scholar
[47]
N. Hansen, S. D. Muller, and P. Koumoutsakos: Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation 11(1), (2003), pp.1-18.
DOI: 10.1162/106365603321828970
Google Scholar