Titanium Surface Modification Techniques for Implant Fabrication – From Microscale to the Nanoscale

Article Preview

Abstract:

This manuscript reviews about titanium surface modification techniques for its application in orthopaedic and dental implants. There are a few limitations in the long term prognosis of orthopaedic and dental implants. Poor osseointegration with bone, periimplant infection leading to implant failure and short term longevity demanding revision surgery, are to mention a few. Micro- and nanoscale modification of titanium surface using physicochemical, morphological and biochemical approaches have resulted in higher bone to implant contact ratio and improved osseointegration. With recent advances in micro, nano-fabrication techniques and multidisciplinary research studies focusing on bridging biomaterials for medical applications, TiO2 nanotubes have been extensively studied for implant applications. The need for titanium implant surface that can closely mimic the nanoscale architecture of human bone has become a priority. For such purpose, TiO2 nanotubes of different dimensions and architectural fashions at the nanoscale level are being evaluated. This manuscript discusses in brief about the in-vitro and in-vivo studies on titanium surface modification techniques. This manuscript also addresses the recent studies done on such nanotubular surfaces for the effective delivery of osteoinductive growth factors and anti bacterial/ anti inflammatory drugs to promote osseointegration and prevent peri-implant infection.

You might also be interested in these eBooks

Info:

Pages:

39-56

Citation:

Online since:

February 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Improving medical implant performance through retrieval information: challenges and opportunities In: NIH technology assessment conference (2000).

Google Scholar

[2] T. Albrektsson et al: Osseointegrated titanium implants, Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man, Acta Orthopaedica Scandinavica 52(4), pp.155-170 (1981).

DOI: 10.3109/17453678108991776

Google Scholar

[3] J. Black: Handbook of Biomaterial properties, In: Hasting G, editor. London: Chapman and Hall, p.179 (1998).

Google Scholar

[4] M. A Imam & A.C. Fraker: Titanium alloys as implant materials, ASTM Special Technical Publication 1272, (1996) pp.3-6.

Google Scholar

[5] J. Katz: Applications of materials in medicine and dentistry: orthopaedic applications, In: Ratner BD HA, Schoen FJ, Lemons JE., editor. Biomaterials science: an introduction to materials in medicine, San Diego.: Academic press. (1996) pp.335-346.

Google Scholar

[6] Barbucci R.: Integrated Biomaterials Science, New York: Kluwer (2002) pp.189-689.

Google Scholar

[7] M.A. Khan, R.L. Williams RL & D.F. Williams: Conjoint corrosion and wear in titanium alloys, Biomaterials, Vol. 20(8) (1999) pp.765-772.

DOI: 10.1016/s0142-9612(98)00229-4

Google Scholar

[8] L.M. Rabbe et al.: Fretting deterioration of orthopaedic implant materials: Search for solutions, Clinical Materials, Vol. 15(4) (1994) pp.221-226.

DOI: 10.1016/0267-6605(94)90049-3

Google Scholar

[9] E.S. Rosenberg, J.P. Torosian: Slots J. Microbial differences in 2 clinically distinct types of failures of osseointegrated implants, Clin Oral Implants Res Jul-Sep, 2(3) (1991) pp.135-144.

DOI: 10.1034/j.1600-0501.1991.020306.x

Google Scholar

[10] S. Schou et al.: Plaque-induced marginal tissue reactions of osseointegrated oral implants: a review of the literature, Clin Oral Implants Res 3(4) (1992) pp.149-161.

DOI: 10.1034/j.1600-0501.1992.030401.x

Google Scholar

[11] M Textor et al.: Properties and biological significance of natural oxide films on titanium and its alloys, In: Brunnete DM TP, Textor M, Thomsen P, editor. Titanium in medicine, New York: Springer (2001) pp.171-230.

DOI: 10.1007/978-3-642-56486-4_7

Google Scholar

[12] J. Choi, R.B. Wehrspohn, J. Lee, U. Gösele: Anodization of nanoimprinted titanium: A comparison with formation of porous alumina Electrochimica Acta Vol. 49 (2004) pp.2645-2652.

DOI: 10.1016/j.electacta.2004.02.015

Google Scholar

[13] P. Brånemark: Osseointegration and its experimental background, J Prosthet Dent Vol. 50(3) (1983) pp.399-410.

Google Scholar

[14] L. Linder, T. Albrektsson, P.I. Branemark: Electron microscopic analysis of the bonetitanium interface, Acta Orthopaedica Scandinavica 54 (1) (1983) pp.45-52.

DOI: 10.3109/17453678308992868

Google Scholar

[15] M. Morra: Biomolecular modification of implant surfaces, Expert Rev Med Devices May 4(3) (2007) pp.361-372.

Google Scholar

[16] D.A. Puleo, A. Nanci: Understanding and controlling the bone-implant interface, Biomaterials Dec 20(23-24) (1999) pp.2311-2321.

DOI: 10.1016/s0142-9612(99)00160-x

Google Scholar

[17] M. Morra: Biochemical modification of titanium surfaces: peptides and ECM proteins, Eur Cell Mater, Vol. 12 (2006) pp.1-15.

DOI: 10.22203/ecm.v012a01

Google Scholar

[18] C. Yao, T.J. Webster: Anodization: a promising nano-modification technique of titanium implants for orthopaedic applications, J Nanosci Nanotechnol, Sep-Oct 6(910) (2006) pp.2682-2692.

DOI: 10.1166/jnn.2006.447

Google Scholar

[19] G. Mendonca et al.: Advancing dental implant surface technology-from micron- to nanotopography, Biomaterials Oct 29(28) (2008) pp.3822-3835.

DOI: 10.1016/j.biomaterials.2008.05.012

Google Scholar

[20] T.I. Kim et al.: Biomimetic approach to dental implants, Curr Pharm Des 14(22) (2008) pp.2201-2211.

Google Scholar

[21] R.K. Sinha et al.: Surface composition of orthopaedic implant metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro, Clin Orthop Relat Res Aug(305) (1994) pp.258-272.

DOI: 10.1097/00003086-199408000-00032

Google Scholar

[22] K.T. Bowers et al.: Optimization of surface micromorphology for enhanced osteoblast responses in vitro, Int J Oral Maxillofac Implants 7(3) (1992) pp.302-310.

Google Scholar

[23] G. Gronowicz & M.B. McCarthy, Response of human osteoblasts to implant materials: integrin-mediated adhesion, J Orthop Res Nov; 14(6) (1996) pp.878-887.

DOI: 10.1002/jor.1100140606

Google Scholar

[24] N. Lumbikanonda & R. Sammons: Bone cell attachment to dental implants of different surface characteristics, Int J Oral Maxillofac Implants Sep-Oct; 16(5) (2001) pp.627-636.

Google Scholar

[25] Ito Y, Liu, L. -S., Imanishi, Y. Material for enhancing cell adhesion by immobilization of cell-adhesive peptide, Journal of Biomedical Materials Research 1991; 25: 13251337.

DOI: 10.1002/jbm.820251102

Google Scholar

[26] Baier RE. Surface properties influencing biological adhesion. In: S. MR, editor. Adhesion in biological systems. New York: Academic press (1970) pp.15-48.

DOI: 10.1016/b978-0-12-469050-9.50007-7

Google Scholar

[27] J.M. Williams, R.A. Buchanan, Ion implantation of surgical Ti--6Al--4V alloy. Materials Science and Engineering A 69(1) (1985) pp.237-246.

DOI: 10.1016/0025-5416(85)90398-2

Google Scholar

[28] K. De Groot et al.: Plasma sprayed coatings of hydroxylapatite Journal of Biomedical Materials Research 21(12) (1987) pp.1375-1381.

DOI: 10.1002/jbm.820211203

Google Scholar

[29] H.W. Denissen et al. Mandibular bone response to plasma-sprayed coatings of hydroxyapatite, The International journal of prosthodontics 3(1) (1990) pp.53-58.

Google Scholar

[30] A. Wennerberg, T. Albrektsson, J. Lausmaa: Torque and histomorphometric evaluation of c. p. titanium screws blasted with 25- and 75-µm-sized particles of Al2O3. Journal of Biomedical Materials Research 30(2) (1996) pp.251-260.

DOI: 10.1002/(sici)1097-4636(199602)30:2<251::aid-jbm16>3.0.co;2-p

Google Scholar

[31] S. Szmukler-Moncler, J.P. Simpso: Physico-chemical characterization of a Ti textured surface prepared by sandblasting and acid etching Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterials Symposium 2, (1996).

Google Scholar

[32] N. Sykaras et al.: Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review, Int J Oral Maxillofac Implants 15(5): (2000)pp.675-690.

Google Scholar

[33] A. Wennerberg, T. Albrektsson, B. Andersson: Design and surface characteristics of 13 commercially available oral implant systems, Int J Oral Maxillofac Implants 8(6) (1993) pp.622-633.

Google Scholar

[34] B. Chehroudi, T.R.L. Gould, D.M. Brunette: Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo, Journal of Biomedical Materials Research 24(9) (1990) pp.1203-1219.

DOI: 10.1002/jbm.820240906

Google Scholar

[35] P.F. Chauvy, P. Hoffmann, D. Landolt: Electrochemical micromachining of titanium through a laser patterned oxide film Electrochemical and Solid-State Letters (2001) 4 (5): C31-C34.

DOI: 10.1149/1.1359057

Google Scholar

[36] P.F. Chauvy, P. Hoffmann, D. Landolt: Applications of laser lithography on oxide film to titanium micromachining Applied Surface Science 208-209(1) (2003) p.165170.

DOI: 10.1016/s0169-4332(02)01361-2

Google Scholar

[37] Y. Ku, C.P. Chung, J.H. Jang: The effect of the surface modification of titanium using a r ecombinant fragment of fibronectin and vitronectin on cell behavior, Biomaterials 26(25) (2005) pp.5153-5157.

DOI: 10.1016/j.biomaterials.2005.01.060

Google Scholar

[38] S. Bierbaum et al.: Modification of Ti6Al4V surfaces using collagen I, III, and fibronectin. I. Biochemical and morphological characteristics of the adsorbed matrix, J Biomed Mater Res A 67(2) (2003)pp.421-430.

DOI: 10.1002/jbm.a.10080

Google Scholar

[39] S. Bierbaum et al.: Modification of Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses. J Biomed Mater Res A 67(2) (2003) pp.431-438.

DOI: 10.1002/jbm.a.10084

Google Scholar

[40] M. Morra et al.: Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies, Biomaterials 24(25)(2003) p.46394654.

DOI: 10.1016/s0142-9612(03)00360-0

Google Scholar

[41] D. Scharnweber et al.: Mineralization behaviour of collagen type I immobilized on different substrates, Biomaterials, 25 (12) (2004) pp.2371-2380.

DOI: 10.1016/j.biomaterials.2003.09.025

Google Scholar

[42] M. Dettin et al.: Effect of synthetic peptides on osteoblast adhesion, Biomaterials 26(22) (2005) pp.4507-4515.

DOI: 10.1016/j.biomaterials.2004.11.023

Google Scholar

[43] H. Zreiqat et al.: Differentiation of human bone-derived cells grown on GRGDSPpeptide bound titanium surfaces. J Biomed Mater Res A 2003 Jan 1; 64(1): 105-113.

DOI: 10.1002/jbm.a.10376

Google Scholar

[44] B. Elmengaard, J.E. Bechtold, K. Soballe: In vivo effects of RGD-coated titanium implants inserted in two bone-gap models, J Biomed Mater Res A 75(2): (2005) pp.249-255.

DOI: 10.1002/jbm.a.30301

Google Scholar

[45] S.J. Xiao: Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment, J Mater Sci Mater Med 8(12) (1997) pp.867-872.

Google Scholar

[46] Y. Liu, The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration, Biomaterials 28(16) (2007) pp.2677-2686.

DOI: 10.1016/j.biomaterials.2007.02.003

Google Scholar

[47] J. Hall, Bone formation at rhBMP-2-coated titanium implants in the rat ectopic model. J Clin Periodontol 34(5) (2007) pp.444-451.

DOI: 10.1111/j.1600-051x.2007.01064.x

Google Scholar

[48] E.P. Briggs: Formation of highly adherent nano-porous alumina on Ti-based substrates: A novel bone implant coating Journal of Materials Science: Materials in Medicine 15 (9) (2004) pp.1021-1029.

DOI: 10.1023/b:jmsm.0000042688.33507.12

Google Scholar

[49] A.R. Walpole: Nano-porous Alumina Coatings for Improved Bone Implant Interfaces. Materialwissenschaft und Werkstofftechnik 34 (12) (2003) pp.1064-1068.

DOI: 10.1002/mawe.200300707

Google Scholar

[50] M. Karlsson et al.: Initial in vitro interaction of osteoblasts with nano-porous alumina. Biomaterials 24(18) (2003) 3039-3046.

DOI: 10.1016/s0142-9612(03)00146-7

Google Scholar

[51] L. Guo, H. Li: Fabrication and characterization of thin nano-hydroxyapatite coatings on titanium Surface and Coatings Technology 185(2-3) (2004) pp.268-274.

DOI: 10.1016/j.surfcoat.2004.01.013

Google Scholar

[52] J. Yang, L. Guo, H. Li: Sol-gel preparation of ultrathin nano-hydroxyapatite coating and its characterization, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 23(5) (2006) pp.1075-1079.

Google Scholar

[53] R. Hu, C.J. Lin, H.Y. Shi: A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate, J Biomed Mater Res A 80(3) (2007) pp.687-692.

DOI: 10.1002/jbm.a.30891

Google Scholar

[54] J. Huang et al.: Electrostatic atomisation spraying: A novel deposition method for nano-sized hydroxyapatite. Key Engineering Materials 309-311 (I) (2006) pp.635-638.

DOI: 10.4028/www.scientific.net/kem.309-311.635

Google Scholar

[55] F. Chen et al.: Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 82(1): ( (2007) p.183191.

DOI: 10.1002/jbm.b.30720

Google Scholar

[56] L. Meirelles et al.: Nano hydroxyapatite structures influence early bone formation. J Biomed Mater Res A (2008).

Google Scholar

[57] X. Zhu et al.: Characterization of nano hydroxyapatite/collagen surfaces and cellular behaviours, J Biomed Mater Res A 79(1): (2006) pp.114-127.

Google Scholar

[58] M.C. Durrieu et al.: Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J Mater Sci Mater Med 15(7) (2004) pp.779-786.

DOI: 10.1023/b:jmsm.0000032818.09569.d9

Google Scholar

[59] J.F. Kay: Calcium phosphate coatings: understanding the chemistry and biology and their effective use. Compend Suppl (15): S520-525; quiz S565-526 (1993).

Google Scholar

[60] C.P. Klein et al.: Long-term in vivo study of plasma-sprayed coatings on titanium alloys of tetracalcium phosphate, hydroxyapatite and alpha-tricalcium phosphate. Biomaterials 15(2) (1994) pp.146-150.

DOI: 10.1016/0142-9612(94)90264-x

Google Scholar

[61] C.P. Klein et al.: Plasma-sprayed coatings of tetracalciumphosphate, hydroxyl-apatite, and alpha-TCP on titanium alloy: an interface study. J Biomed Mater Res 25(1) (1991) pp.53-65.

DOI: 10.1002/jbm.820250105

Google Scholar

[62] J.L. Arias et al.: Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition, Biomaterials 24(20): (2003) pp.3403-3408.

DOI: 10.1016/s0142-9612(03)00202-3

Google Scholar

[63] A. Citeau et al.: In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting, Biomaterials 26(2) (2005) pp.157-165.

DOI: 10.1016/j.biomaterials.2004.02.033

Google Scholar

[64] Y. Liu, K. de Groot, E.B. Hunziker: BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model, Bone 36(5) (2005) pp.745-757.

DOI: 10.1016/j.bone.2005.02.005

Google Scholar

[65] Y. Liu et al.: Delivery mode and efficacy of BMP-2 in association with implants, J Dent Res 86(1) (2007) pp.84-89.

Google Scholar

[66] Y. Liu et al.:. Incorporation of growth factors into medical devices via biomimetic coatings, Philos Transact A Math Phys Eng Sci 15; 364(1838): (2006) pp.233-248.

Google Scholar

[67] E. Gawalt et al.: Self-Assembly and Bonding of Alkanephosphonic Acids on the Native Oxide Surface of Titanium, Langmuir 17(19): (2001) pp.5736-5738.

DOI: 10.1021/la010649x

Google Scholar

[68] T.M.R. Hofer, N.D. Spencer, Alkyl Phosphate Monolayers, Self-Assembled from Aqueous Solution onto Metal Oxide Surfaces, Langmuir 17(13) (2001) pp.4014-4020.

DOI: 10.1021/la001756e

Google Scholar

[69] T.S.M. Textor et al.: Use of molecular assembly techniques for tailoring the chemical properties on smooth and rough titanium surfaces, Boca Raton, Fl, USA.: CRC Press, (2003).

DOI: 10.1201/9780203491430.ch19

Google Scholar

[70] D.P. Liu et al.: The optimal SAM surface functional group for producing a biomimetic HA coating on Ti Journal of Biomedical Materials Research - Part A 77 (4): (2006) pp.763-772.

DOI: 10.1002/jbm.a.30641

Google Scholar

[71] P.J. Majewski, G. Allidi: Synthesis of hydroxyapatite on titanium coated with organic self-assembled monolayers. Materials Science and Engineering A 420 (1-2): (2006) pp.13-20.

DOI: 10.1016/j.msea.2006.01.022

Google Scholar

[72] F.J. Shannon et al., A novel surface treatment for porous metallic implants that improves the rate of bony ongrowth, J Biomed Mater Res A (2007).

Google Scholar

[73] H. Huang et al.: Enhanced osteoblast functions on RGD immobilized surface. J Oral Implantol 29(2): (2003) pp.73-79.

Google Scholar

[74] K.M. Park et al.: Synthesis of Arg-Gly-Asp (RGD) sequence conjugated thermoreversible gel via the PEG spacer arm as an extracellular matrix for a pheochromocytoma cell (PC12) culture, Biosci Biotechnol Biochem 68(11) (2004) pp.2224-2229.

DOI: 10.1271/bbb.68.2224

Google Scholar

[75] G.B. Schneider et al.: The effect of hydrogel charge density on cell attachment, Biomaterials 25(15): (2004) pp.3023-3028.

DOI: 10.1016/j.biomaterials.2003.09.084

Google Scholar

[76] S.A. DeLon, J.J. Moon, J.L. West et al.: Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration, Biomaterials 26(16): (2005) p.32273234.

DOI: 10.1016/j.biomaterials.2004.09.021

Google Scholar

[77] D. Seliktar, MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A 15; 68(4) (2004) pp.704-716.

DOI: 10.1002/jbm.a.20091

Google Scholar

[78] J.L. Dalsin et al.: Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA, Langmuir 18; 21(2): (2005) pp.640-646.

DOI: 10.1021/la048626g

Google Scholar

[79] T.A. Barber et al.: In vitro characterization of peptide-modified p(AAm-co-EG/AAc) IPN-coated titanium implants, J Orthop Res 24(7) (2006) pp.1366-1376.

DOI: 10.1002/jor.20165

Google Scholar

[80] K. Subramani, M.A. Birch: Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function, Biomedical Materials 1(3) 2006 pp.144-154.

DOI: 10.1088/1748-6041/1/3/009

Google Scholar

[81] T.A. Barber et al.: Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro. J Biomed Mater Res A 64(1) (2003) pp.38-47.

DOI: 10.1002/jbm.a.10321

Google Scholar

[82] C.W. Berry et al.: Antibacterial activity of dental implant metals, Implant Dent 1(1): (1992) pp.59-65.

Google Scholar

[83] V. Antoci et al.: Covalently attached vancomycin provides a nanoscale antibacterial surface, Clin Orthop Relat Res 461 (2007) pp.81-87.

DOI: 10.1097/blo.0b013e3181123a50

Google Scholar

[84] V. Antoci Jr., Vancomycin covalently bonded to titanium alloy prevents bacterial colonization, J Orthop Res 25(7) (2007) pp.858-866.

DOI: 10.1002/jor.20348

Google Scholar

[85] M. Lucke et al.: Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats, Bone 32(5) (2003) pp.521-531.

DOI: 10.1016/s8756-3282(03)00050-4

Google Scholar

[86] J. Thiel et al.: Antibacterial properties of silver-doped titania, Small 3(5) (2007) pp.799-803.

Google Scholar

[87] G. Colon, B.C. Ward, T.J. Webster: Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2, J Biomed Mater Res A 78(3) (2006) pp.595-604.

DOI: 10.1002/jbm.a.30789

Google Scholar

[88] M. Yoshinari et al.: Influence of surface modifications to titanium on antibacterial activity in vitro, Biomaterials 22(14): (2001) p.2043-(2048).

DOI: 10.1016/s0142-9612(00)00392-6

Google Scholar

[89] J.P. Collier et al.: Loss of hydroxyapatite coating on retrieved, total hip components, J Arthroplasty 8(4): (1993) pp.389-393.

DOI: 10.1016/s0883-5403(06)80037-9

Google Scholar

[90] S.D. Cook, K.A. Thomas, J.F. Kay: Experimental coating defects in hydroxylapatitecoated implants, Clin Orthop Relat Res (265) (1991) pp.280-290.

Google Scholar

[91] A. Kar, K.S. Raja, M. Misra: Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications, Surface and Coatings Technology 201(6) (2006) pp.3723-3731.

DOI: 10.1016/j.surfcoat.2006.09.008

Google Scholar

[92] M. Schuler et al.: Biomedical interfaces: titanium surface technology for implants and cell carriers, Nanomed 1(4): (2006) pp.449-463.

Google Scholar

[93] P. Yang et al.: Positive and negative TiO2 micropatterns on organic polymer substrates. J Am Chem Soc 14; 129(6): (2007) pp.1541-1552.

Google Scholar

[94] S. Iijima: Helical microtubules of graphitic carbon, Nature 354(6348) (1991) pp.56-58.

DOI: 10.1038/354056a0

Google Scholar

[95] MPa.T. Goswami MPaT. Carbon nanotubes - Production and industrial applications, Materials & Design 28(5): (2007) pp.1477-1489.

Google Scholar

[96] J. M. Planeix NC, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P. M. Ajayan. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis J Am Chem Soc 1994; 116(17): 7935-7936.

DOI: 10.1021/ja00096a076

Google Scholar

[97] Lieber PKaCM. Nanotube Nanotweezers. Science 1999; 286: 2148-2150.

Google Scholar

[98] Saito S. Carbon Nanotubes for Next-Generation Electronics Devices. Science 1997; 278: 77-78.

DOI: 10.1126/science.278.5335.77

Google Scholar

[99] Hoyer P. Semiconductor nanotube formation by a two-step template process. Advanced Materials 1996; 8(10): 857 - 859.

DOI: 10.1002/adma.19960081022

Google Scholar

[100] Kasuga T. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films 2006; 496(1): 141-145.

DOI: 10.1016/j.tsf.2005.08.341

Google Scholar

[101] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of titanium oxide nanotube. Langmuir 1998; 14(12): 3160-3163.

DOI: 10.1021/la9713816

Google Scholar

[102] Karakoti AS, Filmalter R, Bera D, Kuchibhatla SV, Vincent A, Seal S. Spiral growth of one dimensional titania nanostructures using anodic oxidation. J Nanosci Nanotechnol 2006 Jul; 6(7): 2084-(2089).

DOI: 10.1166/jnn.2006.364

Google Scholar

[103] Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 2003 Oct; 24(22): 3893-3907.

DOI: 10.1016/s0142-9612(03)00261-8

Google Scholar

[104] J.M. Macak et al.: TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science 211 (2007) pp.3-18.

DOI: 10.1016/j.cossms.2007.08.004

Google Scholar

[105] D. Vermilyea: Anodic films, Advances in electrochemistry and electrochemical engineering. London: Wiley (1963) p.248.

Google Scholar

[106] L. Young: Anodic oxide films. New York: Plenum, (1961).

Google Scholar

[107] J.W. Schultze, M.M. Lohrengel, D. Ross: Nucleation and growth of anodic oxide films. Electrochimica Acta 1983; 28(7): pp.973-984.

DOI: 10.1016/0013-4686(83)85175-5

Google Scholar

[108] J.L. Delplancke, R. Winand: Galvanostatic anodization of titanium-II. Reactions efficiencies and electrochemical behaviour model Electrochimica Acta 1988; 33(11): 1551-1559.

DOI: 10.1016/0013-4686(88)80224-x

Google Scholar

[109] J.L. Delplancke, R. Winand: Galvanostatic anodization of titanium-I. Structures and compositions of the anodic films Electrochimica Acta 1988; 33(11): 1539-1549.

DOI: 10.1016/0013-4686(88)80223-8

Google Scholar

[110] C.P.V. Yao et al.: Anodized Ti and Ti6Al4V possessing nanometer surface features enhances osteoblast adhesion, J Biomed Nanotechnol 1 (2005) pp.68-73.

Google Scholar

[111] X. Zhu et al.: Effects of topography and composition of titanium surface oxides on osteoblast responses, Biomaterials 25(18) (2004) pp.4087-4103.

DOI: 10.1016/j.biomaterials.2003.11.011

Google Scholar

[112] B. Yang et al.: Preparation of bioactive titanium metal via anodic oxidation treatment, Biomaterials 25(6) (2004) pp.1003-1010.

DOI: 10.1016/s0142-9612(03)00626-4

Google Scholar

[113] H.M. Kim HM KH, Kawashita M, Kokubo T, Nakamura T. Mechanism of apatite formation on anodically oxidized titanium metal in simulated body fluid., Key Eng Mater 254-256 (2004) pp.741-744.

DOI: 10.4028/www.scientific.net/kem.254-256.741

Google Scholar

[114] J. Y. Rho, L. Kuhn-Spearing, P. Zioupos: Mechanical properties and the hierarchical structure of bone, Med Eng Phys 20(2) (1998) pp.92-102.

DOI: 10.1016/s1350-4533(98)00007-1

Google Scholar

[115] R. Beranek, H. Hildebrand, P. Schmuki: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes Electrochemical and Solid-State Letters 6(3) (2003) p. B12-B14.

DOI: 10.1149/1.1545192

Google Scholar

[116] Macak JM, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO 4/NaF electrolytes. . Electrochimica Acta 2005 50 (18): 3679-3684.

DOI: 10.1016/j.electacta.2005.01.014

Google Scholar

[117] V. Zwilling, M. Aucouturier, E. Darque-Ceretti: Anodic oxidation of titanium and TA6V alloy in chromic media- An electrochemical approach, Electrochimica Acta 45(6) (1999) pp.921-929.

DOI: 10.1016/s0013-4686(99)00283-2

Google Scholar

[118] S. P. Albu et al.: 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Physica Status Solidi (RRL) (2) (2007) p. R65-R67.

DOI: 10.1002/pssr.200600069

Google Scholar

[119] A. Ghicov et al.: TiO2-Nb2O5 nanotubes with electrochemically tunable morphologies. Angewandte Chemie - International Edition 45(42) (2006) p.69936996.

DOI: 10.1002/anie.200601957

Google Scholar

[120] J.M. Macak et al.: Smooth anodic TiO2 nanotubes, Angewandte Chemie - International Edition 44 (45) (2005) pp.7463-7465.

DOI: 10.1002/anie.200502781

Google Scholar

[121] Macak JM, Tsuchiya H, Taveira L, Ghicov A, Schmuki P. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions Journal of Biomedical Materials Research - Part A 75 (4) (2005) 928-933.

DOI: 10.1002/jbm.a.30501

Google Scholar

[122] L. V. Taveira et al.: Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes, Journal of the Electrochemical Society 152(10) (2005) p. B405-B410.

DOI: 10.1149/1.2008980

Google Scholar

[123] H. Tsuchiya et al.: Self-organized porous and tubular oxide layers on TiAl alloys. Electrochemistry Communications 9(9) (2007) pp.2397-2402.

DOI: 10.1016/j.elecom.2007.07.013

Google Scholar

[124] H. Tsuchiya et al.: Nanotube oxide coating on Ti-29Nb-13Ta-4. 6Zr alloy prepared by self-organizing anodization, Electrochimica Acta 52(1) (2006) pp.94-101.

DOI: 10.1016/j.electacta.2006.03.087

Google Scholar

[125] H. Tsuchiya et al.: Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes Electrochemistry Communications 7(6) (2005) pp.576-580.

DOI: 10.1016/j.elecom.2005.04.008

Google Scholar

[126] K. Yasuda, P. Schmuki: Formation of self-organized zirconium titanate nanotube layers by alloy anodization, Advanced Materials 19(13) (2007) pp.1757-1760.

DOI: 10.1002/adma.200601912

Google Scholar

[127] V. Zwilling et al.: Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy Surface and Interface Analysis 27(7) (1999) pp.629-637.

DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Google Scholar

[128] S. Kubota et al.: Titanium oxide nanotubes for bone regeneration, J Mater Sci Mater Med 15(9) (2004) pp.1031-1035.

Google Scholar

[129] O.S.J. Seunghan: Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science and Engineering C26 (2006) pp.1301-1306.

DOI: 10.1016/j.msec.2005.08.014

Google Scholar

[130] G. Balasundaram, C. Yao T.J. Webster, TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 84(2) (2008) pp.447-453.

DOI: 10.1002/jbm.a.31388

Google Scholar

[131] Khan SN, Lane JM. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in orthopaedic applications. Expert Opin Biol Ther 4(5) (2004) pp.741-748.

DOI: 10.1517/14712598.4.5.741

Google Scholar

[132] K.C. Popat et al.: Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes, Biomaterials 28(32) (2007) pp.4880-4888.

DOI: 10.1016/j.biomaterials.2007.07.037

Google Scholar

[133] G. Eaninwene G, C. Yao, T.J. Webster:. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces, Int J Nanomedicine 3(2) (2008) pp.257-264.

DOI: 10.2147/ijn.s2552

Google Scholar

[134] C. von Wilmowsky et al. In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig, J Biomed Mater Res B Appl Biomater 89(1) (2009) pp.165-171.

Google Scholar