[1]
K.R.C. Mamundur, R.D. Chenoweth, Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization, IEEE Trans. Power Appar. Systems. 100 (1981), p.3185–3194.
DOI: 10.1109/tpas.1981.316646
Google Scholar
[2]
O. Gavasheli and L. A. Tuan, Optimal Placement of Reactive Power Supports for Transmission Loss Minimization: The Case of Georgian Regional Power Grid, Large Engineering Systems Conference on Power Engineering Montreal, Quebec, Canada, October 10 to 12, (2007).
DOI: 10.1109/lescpe.2007.4437365
Google Scholar
[3]
A.J. Conejo, F.D., Galiana and I. Kockar,: Z-bus loss allocation, IEEE Transactions on Power Systems, Vol. 16, No. 1 (2001).
DOI: 10.1109/59.910787
Google Scholar
[4]
D.I. Sun, B. Ashley, B. Brewar, A. Hughes, W.F. Tinny, Optimal power flow by Newton approach, IEEE Trans. Power Appar. systems. 103 (1984), p.2864–2880.
DOI: 10.1109/tpas.1984.318284
Google Scholar
[5]
E. Lobato, L. Rouco, M. I. Navarrete, R. Casanova and G. Lopez, An LP-based optimal power flow for transmission losses and generator reactive margins minimization, in Proc. of IEEE porto power tech conference, Portugal, Sept. (2001).
DOI: 10.1109/ptc.2001.964894
Google Scholar
[6]
F.C. Lu, Y.Y. Hsu, Reactive power/voltage control in a distribution substation using dynamic programming, IEE Proc. Generation Transmission Distribution 142 (1995), p.639–645.
DOI: 10.1049/ip-gtd:19952210
Google Scholar
[7]
D. Pudjianto, S. Ahmed and G. Strbac, Allocation of VAR support using LP and NLP based optimal power flows, IEE Proc. Generation Transmission Distribution Vol. 149, No. 4, July (2002) pp.377-383.
DOI: 10.1049/ip-gtd:20020200
Google Scholar
[8]
N. Grudinin, Reactive power optimization using successive quadratic programming method, IEEE Trans. Power Systems., Vol. 13, No. 4, November. (1998), pp.1219-1225.
DOI: 10.1109/59.736232
Google Scholar
[9]
X. Lin, A. K. David and C. W. Yu, Reactive power optimization with voltage stability consideration in power market systems, IEE Proc. Generation Transmission Distribution., Vol. 150, No. 3, May (2003), pp.305-310.
DOI: 10.1049/ip-gtd:20030198
Google Scholar
[10]
S. Granville, Optimal reactive power dispatch through interior point methods, IEEE Trans. Power Systems. 9 (1994) p.136–146.
DOI: 10.1109/59.317548
Google Scholar
[11]
G. A. Bakare, G. K. Venayagamoorthy, and U. O. Aliyu, Reactive power and voltage control of the Nigerian grid system using microgenetic algorithm, in Proc. IEEE Power Eng. Soc. General Meeting, San Francisco, CA, vol. 2, (2005), p.1916–(1922).
DOI: 10.1109/pes.2005.1489424
Google Scholar
[12]
H. Yoshida et al., A particle swarm optimization for reactive power and voltage control considering voltage security assessment, IEEE Trans. Power Systems., Vol. 15, No. 4, November. 2001, p.1232–1239.
DOI: 10.1109/59.898095
Google Scholar
[13]
G. Cai, Z. Ren, and T. Yu, Optimal reactive power dispatch based on modified particle swarm optimization considering voltage stability, in Proc. IEEE Power Eng. Soc. General Meeting, (2007), p.1–5.
DOI: 10.1109/pes.2007.386101
Google Scholar
[14]
M. Varadarajan and K. S. Swarup, Network loss minimization with voltage security using differential evolution, Electeric Power System Research., Vol. 78, (2008), p.815–823.
DOI: 10.1016/j.epsr.2007.06.005
Google Scholar
[15]
M. Varadarajan and K. S. Swarup, Differential evolutionary algorithm for optimal reactive power dispatch, International Journal of Electrical Power & Energy Systems., Vol 30, October (2008), p.435–441.
DOI: 10.1016/j.ijepes.2008.03.003
Google Scholar
[16]
US-Canada Power System Outage Task Force, Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations, Issued April (2004).
Google Scholar
[17]
H. Wu, C.W. Yu, N. Xu, X. J. Lin, An OPF based approach for assessing the minimal reactive power support for generators in deregulated power systems, International Journal of Electrical Power & Energy Systems 30(1), (2008), p.23–30.
DOI: 10.1016/j.ijepes.2007.06.002
Google Scholar
[18]
R. He, G. A. Taylor, Y. H. Song Multi-objective optimal reactive power flow including voltage security and demand profile classification, International Journal of Electrical Power & Energy Systems 30(5), (2008), p.327–36.
DOI: 10.1016/j.ijepes.2007.12.001
Google Scholar
[19]
L.D. Arya, L.S. Titare and D.P. Kothari Improved particle swarm optimization applied to reactive power reserve maximization, Electrical Power and Energy Systems 32 (2010) p.368–374.
DOI: 10.1016/j.ijepes.2009.11.007
Google Scholar
[20]
T. Hiyama, and K. Tomsovic, Current status of fuzzy system applications in power systems" Systems, Man, and Cybernetics, 1999. IEEE, SMC , 99 Conference Proceedings 1999 IEEE International Conference on Publication Date: Vol. 6, (1999).
DOI: 10.1109/icsmc.1999.816607
Google Scholar
[21]
K. Tomsovic, M.Y. Chow, Tutorial on fuzzy logic applications in power systems, Prepared for the IEEE-PES Winter Meeting in Singapore January, (2000).
Google Scholar
[22]
J.A. Momoh SM, X.W. MA, and K Tomsovic Overview and literature survey of fuzzy set theory in power system, IEEE, Vol 10, No 3, August1995.
Google Scholar
[23]
A. A. Abou EL-Ela, M. Bishr, S. Allam, and R. El–Sehiemy, Optimal power dispatch using different fuzzy constraints power systems, International Energy Journal, Volume 8, Issue 3, September (2007).
DOI: 10.1016/j.epsr.2006.04.004
Google Scholar
[24]
A. A. Abou EL-Ela, M. Bishr, S. Allam, and R. El–Sehiemy, Optimal Preventive Control Actions Using Multi- Objective Fuzzy Linear Programming Technique, Electric Power System Research Journal, Vol. 74, Issue 1, April (2005), pp.147-155.
DOI: 10.1016/j.epsr.2004.08.014
Google Scholar
[25]
A. Khorsandi, S. H. Hosseinian, A. Ghazanfari, Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem, Electr. Power Syst. Res., 2013, 95, p.206–213.
DOI: 10.1016/j.epsr.2012.09.002
Google Scholar
[26]
M.E. Jahromi, M. Ehsan, A. F. Meyabadi,: A dynamic fuzzy interactive approach for DG expansion planning, Int. J. Electr. Power Energy Syst., 2012, 43, (1), p.1094–1105.
DOI: 10.1016/j.ijepes.2012.06.017
Google Scholar
[27]
J. Talaq, Optimal power system stabilizers for multi machine systems, Int. J. Electr. Power Energy Syst., 2012, 43, (1), p.793–803.
DOI: 10.1016/j.ijepes.2012.06.030
Google Scholar
[28]
A. Khodabakhshian, R. Hemmati, Multi-machine power system stabilizer design by using cultural algorithms, Int. J. Electr. Power Energy Syst., 2013, 44, (1), p.571–580.
DOI: 10.1016/j.ijepes.2012.07.049
Google Scholar
[29]
V. S. Vakula, K.R. Sudha, Design of differential evolution algorithm-based robust fuzzy logic power system stabilizer using minimum rule base, IET. Gener. Transm. Distrib., 2012, 6, (2), p.121–132.
DOI: 10.1049/iet-gtd.2011.0195
Google Scholar
[30]
I. G. Sardou, M. Banejad, R.A., Hooshmand, A. Dastfan, Modified shuffled frog leaping algorithm for optimal switch placement in distribution automation system using a multi-objective fuzzy approach, IET. Gener. Transm. Distrib., 2012, 6, (6), p.493.
DOI: 10.1049/iet-gtd.2011.0177
Google Scholar
[31]
A.A. Abou, R. El–Sehiemy, and A. M. Shaheen, Multi-Objective Fuzzy Based Procedure for Optimal Reactive Power Dispatch Problem", Proceedings of the 14th International Middle East Power Systems Conference (MEPCON, 10), Cairo University, Egypt, December 19-21, (2010).
DOI: 10.21608/iceeng.2012.30813
Google Scholar
[32]
R. El Sehiemy, A. El-Ela, A. Shaheen, Multi-objective fuzzy-based procedure for enhancing reactive power management, IET Gener., Transm. & Distrib., 7, 12 (2013): 1453-1460.
DOI: 10.1049/iet-gtd.2013.0051
Google Scholar