A Multi-Objective Fuzzy-Based Procedure for Reactive Power-Based Preventive Emergency Strategy

Article Preview

Abstract:

This paper proposes a multi-objective fuzzy linear programming (MFLP) procedure for maximizing the effects of preventive reactive power control actions to overcome any emergency condition when they occurred. The proposed procedure is very significant and seeks to eliminate violation constraints and give an optimal reactive power reserve for multi-operating conditions. The proposed multi-objective functions are: minimizing the real transmission losses, maximizing the reactive power reserve at certain generator and maximizing the reactive power reserve at all generation systems and/or switchable devices. The proposed MFLP is applied to 5-bus test system and the West Delta region system as a part of the Egyptian Unified network. The numerical results show that the proposed MFLP technique achieves a minimum real power loss with maximal reactive reserve for power systems for different operating conditions.

You might also be interested in these eBooks

Info:

Pages:

91-102

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.R.C. Mamundur, R.D. Chenoweth, Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization, IEEE Trans. Power Appar. Systems. 100 (1981), p.3185–3194.

DOI: 10.1109/tpas.1981.316646

Google Scholar

[2] O. Gavasheli and L. A. Tuan, Optimal Placement of Reactive Power Supports for Transmission Loss Minimization: The Case of Georgian Regional Power Grid, Large Engineering Systems Conference on Power Engineering Montreal, Quebec, Canada, October 10 to 12, (2007).

DOI: 10.1109/lescpe.2007.4437365

Google Scholar

[3] A.J. Conejo, F.D., Galiana and I. Kockar,: Z-bus loss allocation, IEEE Transactions on Power Systems, Vol. 16, No. 1 (2001).

DOI: 10.1109/59.910787

Google Scholar

[4] D.I. Sun, B. Ashley, B. Brewar, A. Hughes, W.F. Tinny, Optimal power flow by Newton approach, IEEE Trans. Power Appar. systems. 103 (1984), p.2864–2880.

DOI: 10.1109/tpas.1984.318284

Google Scholar

[5] E. Lobato, L. Rouco, M. I. Navarrete, R. Casanova and G. Lopez, An LP-based optimal power flow for transmission losses and generator reactive margins minimization, in Proc. of IEEE porto power tech conference, Portugal, Sept. (2001).

DOI: 10.1109/ptc.2001.964894

Google Scholar

[6] F.C. Lu, Y.Y. Hsu, Reactive power/voltage control in a distribution substation using dynamic programming, IEE Proc. Generation Transmission Distribution 142 (1995), p.639–645.

DOI: 10.1049/ip-gtd:19952210

Google Scholar

[7] D. Pudjianto, S. Ahmed and G. Strbac, Allocation of VAR support using LP and NLP based optimal power flows, IEE Proc. Generation Transmission Distribution Vol. 149, No. 4, July (2002) pp.377-383.

DOI: 10.1049/ip-gtd:20020200

Google Scholar

[8] N. Grudinin, Reactive power optimization using successive quadratic programming method, IEEE Trans. Power Systems., Vol. 13, No. 4, November. (1998), pp.1219-1225.

DOI: 10.1109/59.736232

Google Scholar

[9] X. Lin, A. K. David and C. W. Yu, Reactive power optimization with voltage stability consideration in power market systems, IEE Proc. Generation Transmission Distribution., Vol. 150, No. 3, May (2003), pp.305-310.

DOI: 10.1049/ip-gtd:20030198

Google Scholar

[10] S. Granville, Optimal reactive power dispatch through interior point methods, IEEE Trans. Power Systems. 9 (1994) p.136–146.

DOI: 10.1109/59.317548

Google Scholar

[11] G. A. Bakare, G. K. Venayagamoorthy, and U. O. Aliyu, Reactive power and voltage control of the Nigerian grid system using microgenetic algorithm, in Proc. IEEE Power Eng. Soc. General Meeting, San Francisco, CA, vol. 2, (2005), p.1916–(1922).

DOI: 10.1109/pes.2005.1489424

Google Scholar

[12] H. Yoshida et al., A particle swarm optimization for reactive power and voltage control considering voltage security assessment, IEEE Trans. Power Systems., Vol. 15, No. 4, November. 2001, p.1232–1239.

DOI: 10.1109/59.898095

Google Scholar

[13] G. Cai, Z. Ren, and T. Yu, Optimal reactive power dispatch based on modified particle swarm optimization considering voltage stability, in Proc. IEEE Power Eng. Soc. General Meeting, (2007), p.1–5.

DOI: 10.1109/pes.2007.386101

Google Scholar

[14] M. Varadarajan and K. S. Swarup, Network loss minimization with voltage security using differential evolution, Electeric Power System Research., Vol. 78, (2008), p.815–823.

DOI: 10.1016/j.epsr.2007.06.005

Google Scholar

[15] M. Varadarajan and K. S. Swarup, Differential evolutionary algorithm for optimal reactive power dispatch, International Journal of Electrical Power & Energy Systems., Vol 30, October (2008), p.435–441.

DOI: 10.1016/j.ijepes.2008.03.003

Google Scholar

[16] US-Canada Power System Outage Task Force, Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations, Issued April (2004).

Google Scholar

[17] H. Wu, C.W. Yu, N. Xu, X. J. Lin, An OPF based approach for assessing the minimal reactive power support for generators in deregulated power systems, International Journal of Electrical Power & Energy Systems 30(1), (2008), p.23–30.

DOI: 10.1016/j.ijepes.2007.06.002

Google Scholar

[18] R. He, G. A. Taylor, Y. H. Song Multi-objective optimal reactive power flow including voltage security and demand profile classification, International Journal of Electrical Power & Energy Systems 30(5), (2008), p.327–36.

DOI: 10.1016/j.ijepes.2007.12.001

Google Scholar

[19] L.D. Arya, L.S. Titare and D.P. Kothari Improved particle swarm optimization applied to reactive power reserve maximization, Electrical Power and Energy Systems 32 (2010) p.368–374.

DOI: 10.1016/j.ijepes.2009.11.007

Google Scholar

[20] T. Hiyama, and K. Tomsovic, Current status of fuzzy system applications in power systems" Systems, Man, and Cybernetics, 1999. IEEE, SMC , 99 Conference Proceedings 1999 IEEE International Conference on Publication Date: Vol. 6, (1999).

DOI: 10.1109/icsmc.1999.816607

Google Scholar

[21] K. Tomsovic, M.Y. Chow, Tutorial on fuzzy logic applications in power systems, Prepared for the IEEE-PES Winter Meeting in Singapore January, (2000).

Google Scholar

[22] J.A. Momoh SM, X.W. MA, and K Tomsovic Overview and literature survey of fuzzy set theory in power system, IEEE, Vol 10, No 3, August1995.

Google Scholar

[23] A. A. Abou EL-Ela, M. Bishr, S. Allam, and R. El–Sehiemy, Optimal power dispatch using different fuzzy constraints power systems, International Energy Journal, Volume 8, Issue 3, September (2007).

DOI: 10.1016/j.epsr.2006.04.004

Google Scholar

[24] A. A. Abou EL-Ela, M. Bishr, S. Allam, and R. El–Sehiemy, Optimal Preventive Control Actions Using Multi- Objective Fuzzy Linear Programming Technique, Electric Power System Research Journal, Vol. 74, Issue 1, April (2005), pp.147-155.

DOI: 10.1016/j.epsr.2004.08.014

Google Scholar

[25] A. Khorsandi, S. H. Hosseinian, A. Ghazanfari, Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem, Electr. Power Syst. Res., 2013, 95, p.206–213.

DOI: 10.1016/j.epsr.2012.09.002

Google Scholar

[26] M.E. Jahromi, M. Ehsan, A. F. Meyabadi,: A dynamic fuzzy interactive approach for DG expansion planning, Int. J. Electr. Power Energy Syst., 2012, 43, (1), p.1094–1105.

DOI: 10.1016/j.ijepes.2012.06.017

Google Scholar

[27] J. Talaq, Optimal power system stabilizers for multi machine systems, Int. J. Electr. Power Energy Syst., 2012, 43, (1), p.793–803.

DOI: 10.1016/j.ijepes.2012.06.030

Google Scholar

[28] A. Khodabakhshian, R. Hemmati, Multi-machine power system stabilizer design by using cultural algorithms, Int. J. Electr. Power Energy Syst., 2013, 44, (1), p.571–580.

DOI: 10.1016/j.ijepes.2012.07.049

Google Scholar

[29] V. S. Vakula, K.R. Sudha, Design of differential evolution algorithm-based robust fuzzy logic power system stabilizer using minimum rule base, IET. Gener. Transm. Distrib., 2012, 6, (2), p.121–132.

DOI: 10.1049/iet-gtd.2011.0195

Google Scholar

[30] I. G. Sardou, M. Banejad, R.A., Hooshmand, A. Dastfan, Modified shuffled frog leaping algorithm for optimal switch placement in distribution automation system using a multi-objective fuzzy approach, IET. Gener. Transm. Distrib., 2012, 6, (6), p.493.

DOI: 10.1049/iet-gtd.2011.0177

Google Scholar

[31] A.A. Abou, R. El–Sehiemy, and A. M. Shaheen, Multi-Objective Fuzzy Based Procedure for Optimal Reactive Power Dispatch Problem", Proceedings of the 14th International Middle East Power Systems Conference (MEPCON, 10), Cairo University, Egypt, December 19-21, (2010).

DOI: 10.21608/iceeng.2012.30813

Google Scholar

[32] R. El Sehiemy, A. El-Ela, A. Shaheen, Multi-objective fuzzy-based procedure for enhancing reactive power management, IET Gener., Transm. & Distrib., 7, 12 (2013): 1453-1460.

DOI: 10.1049/iet-gtd.2013.0051

Google Scholar