[1]
S.J. Culp, P.W. Mellick, R.W. Trotter, K.J. Greenless, R.L. Kodell, F.A. Beland, Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem. Toxicol. 44(8) (2006) 1204-1212.
DOI: 10.1016/j.fct.2006.01.016
Google Scholar
[2]
M.C. Moreno, A. Martinez, P. Millan, C. Camara, Study of a pH sensitive optical fibre sensor based on the use of cresol red, Journal of Molecular Structure. 143 (1986) 553-556.
DOI: 10.1016/0022-2860(86)85323-6
Google Scholar
[3]
E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environment International. 30(7) (2004) 953-971.
DOI: 10.1016/j.envint.2004.02.001
Google Scholar
[4]
R.C. Bansal, M. Goyal, Activated Carbon Adsorption, Taylor and Francis Group, London, (2005).
Google Scholar
[5]
M.N. Rashed (2013). Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, in: M.N. Rashed (Ed. ) Organic Pollutants - Monitoring, Risk and Treatment, InTech, ISBN: 978-953-51-0948-8, DOI: 10. 5772/54048, (2013).
DOI: 10.5772/54048
Google Scholar
[6]
Y.B. Onundi, A.A. Mamun, M.F. Al Khatib, Y.M. Ahmed, Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon, International Journal of Environmental Science Technology. 7 (4) (2010).
DOI: 10.1007/bf03326184
Google Scholar
[7]
S.M. Kanawade, R.W. Gaikwad, Removal of dyes from dye effluent by using sugarcane bagasse ash as an adsorbent, International Journal of Chemical Engineering and Applications. 2(3) (2011) 202-206.
DOI: 10.7763/ijcea.2011.v2.103
Google Scholar
[8]
L.S. Oliveira, A.S. Franca, T.M. Alves, S.D.F. Rocha, Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. J. Hazard Mater. 155 (2008) 507-512.
DOI: 10.1016/j.jhazmat.2007.11.093
Google Scholar
[9]
A. Saeed, M. Sharif, M. Iqbal, Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium, and mechanism of crystal violet adsorption, J. Hazard. Mater. 179 (2010) 564-572.
DOI: 10.1016/j.jhazmat.2010.03.041
Google Scholar
[10]
W.T. Tsai, H.C. Hsu, T.Y. Su, K.Y. Lin, C.M. Lin, Removal of basic dye (Methylene Blue) from wastewaters utilizing beer brewery waste, J. Hazard. Mater. 154 (2008) 73-78.
DOI: 10.1016/j.jhazmat.2007.09.107
Google Scholar
[11]
E.L.K. Mui, W.H. Cheung, M. Valix, G. Mckay, Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis, J. Colloid Interf. Sci. 347 (2010) 290-300.
DOI: 10.1016/j.jcis.2010.03.061
Google Scholar
[12]
O. Demirbas, M. Alkan, M. Dogan, The removal of victoria blue from aqueous solution by adsorption on a low-cost material, Adsorption. 8 (2002) 341–349.
Google Scholar
[13]
E.L.K. Mui, D.C.K. Ko, G. McKay, Production of active carbons from waste tires A review, Carbon. 42 (2004) 2789-2805.
DOI: 10.1016/j.carbon.2004.06.023
Google Scholar
[14]
Y.R. Lin, H. Teng, Mesoporous carbons from waste tire char and their application in wastewater discoloration, Micropor. Mesopor. Mat. 54 (2002) 167-174.
DOI: 10.1016/s1387-1811(02)00380-3
Google Scholar
[15]
C. Troca-Torrado, M. Alexandre-Franco, C. Fernández-González, M. Alfaro-Domínguez, V. Gómez-Serrano, Development of adsorbents from used tire rubber: Their use in the adsorption of organic and inorganic solutes in aqueous solution, Fuel Processing Technology. 92 (2011).
DOI: 10.1016/j.fuproc.2010.03.007
Google Scholar
[16]
G. San Miguel, G.D. Fowler, C.J. Sollars, Study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber, Carbon. 41 (2003) 1009-1016.
DOI: 10.1016/s0008-6223(02)00449-9
Google Scholar
[17]
G. San Miguel, G.D. Fowler, C.J. Sollars, Pyrolysis of tyre rubber: porosity and adsorption characteristics of the pyrolytic chars, Ind Eng Chem Res. 37(6) (1998) 2430-2435.
DOI: 10.1021/ie970728x
Google Scholar
[18]
I.M. Lima, A. McAloon, A.A. Boateng, Activated carbon from broiler litter: Process description and cost of production, Biomass and Bioenergy. 32(6) (2008) 568-572.
DOI: 10.1016/j.biombioe.2007.11.008
Google Scholar
[19]
G, Tchobanoglous, F. L. Burton, H. D. Stensel, Wastewater engineering: treatment and reuse, Metcalf and Eddy Inc. McGraw-Hill, New York, (2003).
Google Scholar
[20]
J. C. Crittenden, R. R. Trussell, D. W. Hand, K. J. Howe, G. Tchobanoglous, MWH's Water Treatment: Principles and Design, Wiley, New Jersey, (2012).
DOI: 10.1002/9781118131473
Google Scholar
[21]
J. Goel, K. Kadirvelu, C. Rajagopal, K Garg, Removal of lead (II) by adsorption using treated granular activated carbon: Batch and column studies, J. Hazard. Mater. B125 (2005) 211-220.
DOI: 10.1016/j.jhazmat.2005.05.032
Google Scholar
[22]
D. D. Do, Adsorption analysis: equilibria and kinetics, Imperial College Press, London, (1998).
Google Scholar
[23]
Y. T. Hung, H. H. Lo, L.W. Wang, J. R. Taricsa, K. H. Li, Granular Activated Carbon Adsorption, in L. K. Wang, Y. T. Hung, N. K. Shammas, (Eds. ), Handbook of Environmental Engineering: Physicochemical Treatment Processes, The Humana Press Inc., New Jersey, 2005, pp.573-630.
DOI: 10.1385/1-59259-820-x:573
Google Scholar
[24]
E. Forgacs, T. Cserhati, G. Oros, Removal of Synthetic dyes from wastewaters: a review, Environmental International 30 (2004), 953-971.
DOI: 10.1016/j.envint.2004.02.001
Google Scholar