Toward an Integrated Approach of HV and MV Circuit-Breakers Optimization Maintenance Planning and Reliability Assessment: A Case Study

Article Preview

Abstract:

This paper investigates technical and organizational tools to improve maintenance planning performances. Indeed, maintaining a high level of reliability and availability of a Medium Voltage electrical network protection system such as the Medium Voltage and High Voltage circuit-breaker and its numerical protection relay at a low operating expenses cost is one of the most critical and challenging tasks for MV electrical distribution network operators. This work has mainly two goals. Firstly, to propose an operating expenses budget function that evaluates the Planned Scheduled Preventive Maintenance Policy combined with a Condition-based maintenance fora real series-parallel multi-assets MV electrical distribution system with active redundancy under the reliability and the maintenance frequency visits of these components. Secondly, to implement an integrated genetic algorithm approach in order to look for the optimal perfect and planned preventive maintenance scheduling policy and condition-based maintenance that minimizes the maximum operating expenses cost of the entire system.The method determines the optimal schedule of preventive maintenance actions based on minimization both reliabilty and operating expenses costs. Conclusions and recommendations for practice are made on the basis of obtained results.

You might also be interested in these eBooks

Info:

Pages:

133-153

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Satti, J. Panida, and K. Mladen, Circuit Breaker and Transformer Inspection and Maintenance: Probabilistic Models, 8th International Conference on Probabilistic Methods Applied to Power Systems, Iowa, USA, 12-16 September, pp.1003-1008, (2004).

Google Scholar

[2] A. Alrabghi, and T. Ashutosh, State of the art in simulation-based optimization for maintenance systems, Computers & Industrial Engineering, Vol. 82, pp.167-182, (2014).

DOI: 10.1016/j.cie.2014.12.022

Google Scholar

[3] DD. Adhikary, G.K. Bose, D. Bose and S. Mitra, Maintenance class-based cost-effective preventive maintenance scheduling of coal-fired power plants, Int. J. of Reliability and Safety, Vol. 7, No. 4, pp.358-371, (2013).

DOI: 10.1504/ijrs.2013.057422

Google Scholar

[4] TW. Leung, Predictive Maintenance of Circuit Breakers, Master thesis, University of Waterloo, Belgium, (2007).

Google Scholar

[5] M. Zellagui, Impact des FACTS sur les performances des systèmes de protection appliqués au réseau de transport, Thèse de doctorat, Université de Batna, Algérie, (2014).

Google Scholar

[6] ME. Honarmand, MR. Haghifam, H.D. Barhagh, and J. Talebi, Maintenance priorities in distribution transformers based on importance and risk, 22nd International Conference on Electricity Distribution, CIRED, Stockholm, Sweden, 10-13 June, pp.1-4, (2013).

DOI: 10.1049/cp.2013.0695

Google Scholar

[7] ML. Mahadevan, and TP. Robert, Maintenance optimization in a cement industry raw-mill system using genetic algorithm, Int. J. of Decision Sciences, Risk and Management, Vol. 2, No. 3/4, pp.291-307, (2010).

DOI: 10.1504/ijdsrm.2010.037488

Google Scholar

[8] Y. Ozbek, A. Zeid, and S. Kamarthi, A Q-learning-based adaptive grouping policy for condition-based maintenance of a flow line manufacturing system, Int. J. of Collaborative Enterprise, Vol. 2, No. 4, pp.302-321, (2011).

DOI: 10.1504/ijcent.2011.043828

Google Scholar

[9] SH. Ding, and S. Kamaruddin, Maintenance policy optimization-literature review and directions, International Journal of Advanced Manufacturing Technology, Vol. 76, No. 5, pp.1263-1283, (2015).

DOI: 10.1007/s00170-014-6341-2

Google Scholar

[10] W.R. Hou, Z.H. Jiang, An Optimization Opportunistic Maintenance Policy of Multi-Unit Series Production System, , Advanced Materials Research, Vol. 421, pp.617-624, (2012).

DOI: 10.4028/www.scientific.net/amr.421.617

Google Scholar

[11] R. Lakshmi, P. Ankit, SCADA Based Online Circuit Breaker Monitoring System, Proceedings in IOSR Journal of Electrical and Electronics Engineering, Vol. 5, No. 3, pp.45-48, (2013).

DOI: 10.9790/1676-534548

Google Scholar

[12] I. Ayadi, L. Bouillaut and A. Aknin, Optimal preventive maintenance schedules using specific genetic algorithms and probabilistic graphical model, Advances in Safety, Reliability and Risk Management, ESREL, pp.901-909, (2011).

DOI: 10.1201/b11433-127

Google Scholar

[13] G. Levitin, A. Lisnianski, Optimization of imperfect preventive maintenance for multi-state systems, Reliability Engineering and System Safety, Vol. 67, pp.193-203, (2000).

DOI: 10.1016/s0951-8320(99)00067-8

Google Scholar

[14] G. Yingkui, and L. Jing, Multi-State System reliability a new and systematic review, Procedia Engineering, Vol. 29, pp.531-536, (2012).

DOI: 10.1016/j.proeng.2011.12.756

Google Scholar

[15] R. Bris, E. Châtelet, and F. Yallaoui, New method to minimize the preventive maintenance cost of series parallel system, Reliability Engineering and system Safety, Vol. 82, pp.247-255, (2003).

DOI: 10.1016/s0951-8320(03)00166-2

Google Scholar

[16] RP. Nicolai, R. Dekker, Optimal maintenance of multi-component systems: a review, Complex System Maintenance Handbook, Springer, London, p.263–286, (2008).

DOI: 10.1007/978-1-84800-011-7_11

Google Scholar

[17] R. Laggoune, A. Chateauneuf, and D. Aissani, Preventive maintenance scheduling for a multi-component system with non-negligible replacement time, International Journal of Systems Science, Vol. 41, No. 7, p.747–761, (2010).

DOI: 10.1080/00207720903230765

Google Scholar

[18] I. Ushakov, The method of generalized generating sequences, European Journal of Operational Research, Vol. 125, pp.316-23, (2000).

DOI: 10.1016/s0377-2217(99)00462-2

Google Scholar

[19] A. Lisnianski, G. Levitin, Multi-states system reliability-assessment-optimization and applications, World Scientific, Series on Quality, Reliability and Engineering Statistics. Vol. 6, pp.15-50, (2013).

DOI: 10.1142/5221

Google Scholar

[20] PY. Chaux, Formalisation de la cohérence et calcul des séquences de coupe minimales pour les systèmes binaires dynamiques réparables, Thèse de doctorat, ENS de Cachan, (2013).

Google Scholar

[21] A. Rami, A. Zeblah, H. Hamdaoui, Y. Massim, and F. Harrou, An efficient artificial immune algorithm for power system reliability optimization, , Int. J. of Power and Energy Conversion, Vol. 1, No. 2/3, pp.178-197, (2009).

DOI: 10.1504/ijpec.2009.027943

Google Scholar

[22] Y. Liu, H. Huang, Optimization of multi-state elements replacement policy for multi-state systems, Proceedings Reliability and maintainability symposium (RAMS), San Jose, California, USA, 25-28 January. pp.1-7, (2010).

DOI: 10.1109/rams.2010.5448061

Google Scholar

[23] Y. Gu, Multi-State System Reliability A New and Systematic Review, Procedia Engineering, Vol. 29, pp.531-536, (2012).

Google Scholar

[24] AR. Simpson, Genetic algorithms compared to other techniques for pipe optimization, Journal of Water Resources Planning and Management, Vol. 120, pp.423-443, (1994).

DOI: 10.1061/(asce)0733-9496(1994)120:4(423)

Google Scholar

[25] M. Mahmoudi, A. El Barkany, and A. El Khalfi, Vers une stratégie d'amélioration de la maintenance des postes de transformation HTB/HTA, Cas de l'ONEE Distribution, 9th International Conference Integrated Design and Production CPI, Tlemcen, Alegria, 21-23 October, 2013b.

Google Scholar

[26] A.C. Igboanugo, A Statistical Study of 33kV Distribution System Problems in Some States of Nigeria, International Journal of Engineering Research in Africa, Vol. 2, pp.73-88, (2010).

DOI: 10.4028/www.scientific.net/jera.2.73

Google Scholar

[27] R. Laggoune, Optimisation de la maintenance par la fiabilité opérationnelle des systèmes mécaniques multi-composants, Thèse de doctorat, Université Bejaïa, Algérie, (2009).

Google Scholar

[28] VH. Coria, S. Maximov, F. Rivas, Analytical method for optimization of maintenance policy based on available system failure data, Reliability Engineering and system Safety, Vol. 135, No. 6, pp.55-63. (2015).

DOI: 10.1016/j.ress.2014.11.003

Google Scholar

[29] M. Mahmoudi, A. El Barkany, and A. El Khalfi, MV electrical network maintenance strategy: A new management approach, RPN Journal of Engineering and Applied Sciences, Vol. 8, No. 2, pp.136-148, 2013a.

Google Scholar

[30] W. Kuo, Optimal Reliability Design: Fundamentals and Applications, Cambridge University Press, United Kingdom, (2001).

Google Scholar

[31] MA. Valdebenito, and GI. Shuëller, A survey on approaches for reliability-based optimization, Structural and Multidisciplinary Optimization, Vol. 42, No. 5, pp.645-663, (2010).

DOI: 10.1007/s00158-010-0518-6

Google Scholar

[32] M. Doostparast, and F. Kolahan, Reliability-based approach to optimize preventive maintenance scheduling for coherent systems, Reliability Engineering and System Safety, Vol. 126, No. 6, pp.98-106, (2014).

DOI: 10.1016/j.ress.2014.01.010

Google Scholar

[33] S.B. Twum, E. Aspinwall, Complex System Reliability Optimization: A Multi-Criteria Approach, International Journal of Engineering Research in Africa, Vol. 9, pp.13-21, (2013).

DOI: 10.4028/www.scientific.net/jera.9.13

Google Scholar

[34] JH. Holland, Adaptation in natural and artificial systems, an Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press Cambridge, Massachusetts, USA (1992).

Google Scholar

[35] C.H. Wang, and W.T. Sheng, Optimizing bi-objective imperfect preventive maintenance model for series-parallel system using established hybrid genetic algorithm, Journal of Intelligent Manufacturing, Vol. 25, Iss. 3, pp.603-616, (2014).

DOI: 10.1007/s10845-012-0708-8

Google Scholar

[36] W. Sakon, and R. Bordin, The heuristics of effective maintenance policy under the given availability, Int. J. of Collaborative Enterprise, Vol. 2, No. 4, pp.251-262, (2011).

Google Scholar

[37] A. Azadeh, S. Ghanei, and M. Sheikhalishahi, A multi-objective optimization problem for multi-state series-parallel systems: A two-stage flow-shop manufacturing system, Reliability Engineering and System Safety, Vol. 136, 2015, pp.193-207, (2015).

DOI: 10.1016/j.ress.2014.11.009

Google Scholar

[38] S. Ginoria, G.L. Samuel, and G. Srinivasan, Optimization of a machine loading problem using a genetic algorithm-based heuristic, Int. J. Productivity and Quality Management, Vol. 15, No. 1, pp.36-56, (2015).

DOI: 10.1504/ijpqm.2015.065984

Google Scholar

[39] PC. Padhi, SS. Mahapatra, SN. Yadav, and DK. Tripathy, Multi-objective optimization of machining parameters in wire electrical discharge machine using non-dominating sorting genetic algorithm, Int. J. of Productivity and Quality Management, Vol. 14, No. 1, pp.107-129, (2014).

DOI: 10.1504/ijpqm.2014.063164

Google Scholar

[40] T. Zhang, Z. Cheng, YJ. Liu, and B. Guo, Maintenance scheduling for multi-unit system: a stochastic Petri-net and genetic algorithm based approach, Eksploatacja i Niezawodnosc - Maintenance and Reliability, Vol. 14, No. 3, pp.256-264, (2012).

Google Scholar

[41] W.I. Soro, Modélisation et optimization des performances et de la maintenance des systèmes multi-états, Mémoire de thèse de doctorat, Université Laval, Laval, (2011).

Google Scholar