Property Evaluation of Nitrided Layers of Porous Sintered Iron

Article Preview

Abstract:

Powder metallurgy was mainly used to produce automobile parts such as beds self-lubricating bearings, and gear wheels. In order to investigate the effect of porosity on the mechanical and tribological properties of sintered steel, specimens with 10%, 20%, and 30% porosity were produced on samples of parallelepipedic form, with technical of iron powders that has been used in a large industrial area. Sintering was carried out at 1100 ° C for 2 hours in an argon atmosphere. Metallographic studies such as pore formation, saturated area, and the nitrided layer analyses were performed by microscopy and optical microscopy. It was found that the irregular pore formation tendencies increase with an increase in porosity (%). Furthermore, an increase in porosity has proven to decrease the mechanical properties and increase the wear trace area and the friction coefficient of sintered steel.

You might also be interested in these eBooks

Info:

Pages:

11-17

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. M Fedorchenko, L. N Pugina, Composite sintered antifriction matrices, Kiev: Naukova Dumka, (1980) 91-95.

Google Scholar

[2] N. Anton, J. L Delgado, F M Velasco, J. Torralba, Journal of Materials Processing Technology, 143-144 (2003) 475–4800.

Google Scholar

[3] F. Velasco, M. A Martínez, R. Calabrés, A. Bautista, J Abenojar, Tribology International, 42 (2009) 1199–1205.

DOI: 10.1016/j.triboint.2009.04.017

Google Scholar

[4] A. Simchi, H. Danninger. Powder Metallurgy. J 44 (2004) 73- 80.

Google Scholar

[5] L. Ceschini, G. Palombarini, G. Sambogna, D. Firrao, G. Scavino, G. Ubertalli, Tribology international, (8)39 (2006) 748-755.

DOI: 10.1016/j.triboint.2005.07.003

Google Scholar

[6] A . Weber, Powder Metallurgy International, 25(3) 125 (1993).

Google Scholar

[7] A. Salak, Powder Metallurgy, Cambridge International Science, (1997) 8- 60.

Google Scholar

[8] T. Bell, Source book on nitriding. Metals Park, OH: ASM, (1977) 266-270.

Google Scholar

[9] C. Z. Chen, X. H. Shi. P. C. Zhang. B. Bai. Y.X. Leng. N. Huang, Solide state Ionics, 179  (2008) 971- 978.

Google Scholar

[10] G. Randall. Method of controlling the carbon or oxygen content of a powder injection MPIF, Princeton, New Jersey, USA, (1997).

Google Scholar

[11] J.F. Gu. D. H. Bei. J.S. Pan. K. Lu, Mater, Lett, 55 (2002) 340-344.

Google Scholar

[12] E. A. Ochoa, D. Wisnivesky, T. Minea, M. Ganciu, C. Tauziede, P. F. Alvarez. Surface and Coating Technology. 10 (2012) 1457- 1461.

DOI: 10.1016/j.surfcoat.2008.11.025

Google Scholar

[13] V. G. Gorbach, S. Mechachti, Yu. N. Moskalenko, Powder Metallurgy, (30) (1991) 24–28.

Google Scholar

[14] O. Benchiheub, S. Mechachti, S. Serrai,  M. G. Khalifa. Elaboration of iron powder from mill scale. J. material of environnement science N°4 (2010) 267-276.

Google Scholar

[29] D.

Google Scholar

[15] M.V. Belous, Yu. N. Moskalenko, V. G. Permyakov. Magnetic properties of iron nitrides. News of high schools. Metallurgy. N°10 (1969) 75-78.

Google Scholar

[16] C. Ghiglione, C. Louroux Tournier. Practice of thermo-chemical treatments of nitriding nitrocarburation and derivatives. Engineering Technician M1 227 (2002).

Google Scholar