An Efficient Chaotic Cuckoo Search Framework for Solving Non-Convex Optimal Power Flow Problem

Article Preview

Abstract:

The optimal power flow (OPF) problem is a very complicated task in power systems. OPF problem has a set of equality and inequality constraints. This paper looks at a chaotic cuckoo search (CCS) algorithm for solving non-convex OPF problem. The proposed CCS is a bio-inspired optimization calculation that is inspired by the behaviour of cuckoos people in nature. The chaotic guide is a variation of qualities combined with CS. A sinusoidal chaotic is integrated with CS algorithm and tested on standard IEEE 30-bus test system to the point of improving its global speed of convergence and enhancing its performance. The elitism scheme is also serves to save the best cuckoo during amid the procedure when updating the cuckoo. The results show clearly the superiority of CCS in searching for the best function values results when compared with well-known metaheuristic search algorithms.

You might also be interested in these eBooks

Info:

Pages:

84-99

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. E. El-Hawary, J. K. Landrigan. Optimum operation of fixed-head hydro-thermal electric power systems: Powell's Hybrid Method Versus Newton-Raphson Method. IEEE Transactions on Power Apparatus and Systems, on. 101, no. 3, (1982): 547-554.

DOI: 10.1109/tpas.1982.317267

Google Scholar

[2] Berry, G. & Curien, P. L. Sequetial algorithms on concrete data structures. Theor. Comput. Sci. 20, (1982): 265–321.

Google Scholar

[3] Yoshihiro tanaka, Masao fukushima and Toshihide ibaraki. A comparative study of several semi-infinite nonlinear programming algorithms. A. Theory and Methodology 36, (1988): 92–100.

DOI: 10.1016/0377-2217(88)90010-0

Google Scholar

[4] Gaing, Z. -L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 18, (2003): 1187-1195.

DOI: 10.1109/tpwrs.2003.814889

Google Scholar

[5] El Ela, A. A., Abido, M. Spea, S. Optimal power flow using differential evolution algorithm. Electr. Power Syst. 80, (2010): 878-885.

DOI: 10.1016/j.epsr.2009.12.018

Google Scholar

[6] Bachir Bentouati. Lakhdar Chaib and Saliha Chettih. Optimal Power Flow using the Moth Flam Optimizer: A case study of the Algerian power system. Indonesian Journal of Electrical Engineering and Computer Science.; (2016): 1: 3.

DOI: 10.11591/ijeecs.v1.i3.pp431-445

Google Scholar

[7] Bouchekara, H. R. E. H., Chaib, A. E., Abido, M. A. & El-sehiemy, R. A. Optimal power flow using an Improved Colliding Bodies Optimization algorithm. Appl. Soft Comput. J, 42 (2016): 119–131.

DOI: 10.1016/j.asoc.2016.01.041

Google Scholar

[8] Bachir Bentouati, Saliha Chettih, Pradeep . Jangir and Indrajit N. Trivedi. A solution to the optimal power flow using multi-verse optimizer J. Electrical Systems 12-4 pp. (2016): 716-733.

Google Scholar

[9] Yang XS, Nature-inspired metaheuristic algorithms, 2nd Ed., Luniver Press, Bristol (2010).

Google Scholar

[10] Yang XS, Engineering optimization: an introduction with metaheuristic applications. Wiley, London (2010).

Google Scholar

[11] Deb, X. Y. S. Cuckoo search: recent advances and applications. (2013). doi: 10. 1007/s00521-013-1367-1.

Google Scholar

[12] Wang, G., Deb, S., Gandomi, A. H., Zhang, Z. & Alavi, A. H. Chaotic cuckoo search. Soft Comput. (2015). doi: 10. 1007/s00500-015-1726-1.

DOI: 10.1007/s00500-015-1726-1

Google Scholar

[13] Park, J. -B., Lee, K. -S., Shin, J. -R., A particle swarm optimization for economic dispatch with non-smooth cost functions, Power Systems, IEEE Transactions on, vol 20, 1, ( 2005) 34-42.

DOI: 10.1109/tpwrs.2004.831275

Google Scholar

[14] Bouchekara, et all , R. A. Optimal power flow using an Improved Colliding Bodies Optimization algorithm. Appl. Soft Comput. J., vol 42, (2016): 119–131.

DOI: 10.1016/j.asoc.2016.01.041

Google Scholar

[15] S. Duman, U. Guvenc, Y. Sonmez & N. Yorukeren, Optimal power flow using gravitational search algorithm, Energy Conversion and Management, 59, (2012): 86–95.

DOI: 10.1109/inista.2012.6246993

Google Scholar

[16] M. Joorabian & E. Afzalan, Optimal power flow under both normal and contingent operation conditions using the hybrid fuzzy particle swarm optimisation and Nelder–Mead algorithm (HFPSO–NM), Applied Soft Computing, 14, ( 2014): 623–633.

DOI: 10.1016/j.asoc.2013.09.015

Google Scholar

[17] Ahmed Salhi, Djemai Naimi , Tarek Bouktir Optimal power flow resolution using artificial bee colony algorithm based grenade explosion method, J. Electrical Systems 6-4 (2016): 734-756.

Google Scholar

[18] Rezaei, A.M., and Karami, A., Artificial bee colony algorithm for solving muli-objective optimal power flow problem, Electr. Power Energy Syst., Vol. 53, (2013): 219–230.

DOI: 10.1016/j.ijepes.2013.04.021

Google Scholar

[19] R. Roy & H.T. Jadhav, Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm, Electrical Power and Energy Systems, 64, ( 2015): 562–578.

DOI: 10.1016/j.ijepes.2014.07.010

Google Scholar

[20] Sayah S, Zehar K. Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Convers Manag; 49 (2008): 3036–42.

DOI: 10.1016/j.enconman.2008.06.014

Google Scholar

[21] A. Ramesh Kumar & L. Premalatha, Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization, Electrical Power and Energy Systems, 73, (2015): 393–399.

DOI: 10.1016/j.ijepes.2015.05.011

Google Scholar

[22] Ghasemi,M., Ghavidel, S., Rahmani, S., Roosta, A., and Falah, H., A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost function, Eng. Appl. Art. Intellig., Vol. 29, (2014).

DOI: 10.1016/j.engappai.2013.11.003

Google Scholar

[23] Niknam, T., Narimani, M. R., and Azizipanah-Abarghooee, R., A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect, Energy Conv. Manage., Vol. 58, (2012): 197–206.

DOI: 10.1016/j.enconman.2012.01.017

Google Scholar

[24] Basu, M., Multi-objective optimal power flow with FACTS , Energy Convers. Manag., Vol. 52, pp. ( 2011): 903–910.

DOI: 10.1016/j.enconman.2010.08.017

Google Scholar

[25] Bouchekara, H. R. E. H., Abido, M. A., and Boucherma, M., Optimal power flow using teaching–learning-based optimization technique, Electr. Power Syst. Res., Vol. 114, (2014): 49–59.

DOI: 10.1016/j.epsr.2014.03.032

Google Scholar

[26] Christy, A. A., and Vimal Raj, P. A. D., Adaptive biogeography based predator–prey optimization technique for optimal power flow, Electr. Power Energy Syst., Vol. 62, (2014): 344–352.

DOI: 10.1016/j.ijepes.2014.04.054

Google Scholar

[27] A. Bhattacharya & PK. Chattopadhyay, Application of biogeography-based optimisation to solve different optimal power flow problems, IET Generation, Transmission and Distribution, on 5 no 1, ( 2011): 70–80.

DOI: 10.1049/iet-gtd.2010.0237

Google Scholar

[28] Abido, M. A., Optimal power flow using particle swarm optimization, Electr. Power Energy Syst., on 24, (2002): 563–571.

DOI: 10.1016/s0142-0615(01)00067-9

Google Scholar

[29] Roy, P. K., and Paul, C., Optimal power flow using krill herd algorithm, Int. Trans. Electr. Energ. Syst., ( 2014) DOI: 10. 1002/etep. 1888.

DOI: 10.1002/etep.1888

Google Scholar

[30] A. A. Abou El Elaa, M.A. Abido & S.R. Spea, Optimal power flow using differential evolution algorithm, Electric Power Systems Research, 80, (2010): 878–885.

DOI: 10.1016/j.epsr.2009.12.018

Google Scholar

[31] M. Rezaei Adaryani & A. Karami, Artificial bee colony algorithm for solving multi-objective optimal power flow problem, Electrical Power and Energy Systems, on 53, 2 (2013): 19–230.

DOI: 10.1016/j.ijepes.2013.04.021

Google Scholar

[32] Sailaja, K. M., and Maheswarapu, S., Enhanced genetic algorithm based computation technique for multi-objective optimal power flow, Electr. Power Energy Syst., no. 32, (2010): 736–742.

DOI: 10.1016/j.ijepes.2010.01.010

Google Scholar