[1]
E.I. Nep, B.R. Conway, Characterization of Grewia Gum, a potential pharmaceutical excipient, J. Excip Food Chem., 1 (2010) 30-40.
Google Scholar
[2]
E.I. Nep, B.R. Conway, Grewia polysaccharide as a pharmaceutical excipient in matrix tablets, J. Excip Food Chem., 2 (1) 3-15.
Google Scholar
[3]
I.J. Ogaji, S.W. Hoag, Effect of Grewia gum as a suspending agent on Ibuprofen paediatric formulation, AAPS Pharm Sci Tech., 12 (2011) 507-13.
DOI: 10.1208/s12249-011-9606-1
Google Scholar
[4]
S.H. Sambo, O. Ahmed, S.M. Shaltoe, Phytochemical Screening and Mineral Analysis of Grewia mollis Stems Bark, Int. J. Biochem Res Rev., 6 (2015) 75-81.
DOI: 10.9734/ijbcrr/2015/14162
Google Scholar
[5]
E.I. Nep, P.O. Odumosu, N.C. Ngwuluka, P.O. Olorunfemi, N.A. Ochekpe, Pharmaceutical Properties and Applications of a Natural Polymer from Grewia mollis, Journal of Polymers, (2013).
DOI: 10.1155/2013/938726
Google Scholar
[6]
I. S. Okafor, The rheological properties of grewia gum, Nigeria Journal of Polymer Science and Technology, 2(2001) 169-175.
Google Scholar
[7]
I. S. Okafor, A. Chukwu, Water vapour permeability of aqueous-based grewia gum film, Nigeria Journal of Polymer Science and Technology, 2 (2003), 176–182.
Google Scholar
[8]
M. Emeje, C. Isimi, O. Kunle, Effect of Grewia gum on the mechanical properties of Paracetamol tablet formulations, Afr J Pharm Pharmacol., 2 (2008) 1-6.
Google Scholar
[9]
I. S. Okafor, I. M. Danat, The influence of granulating solvents on drug release from tablets containing grewia gum, Journal of Pharmacy and Bioresources, 1 (2004) 76–83.
DOI: 10.4314/jpb.v1i1.32053
Google Scholar
[10]
C.W. Vendruscolo, C. Ferrero, E.A.G. Pineda, Physicochemical and mechanical characterization of galactomannan from Mimosa scabrella: effect of drying method, Carbohydr Polym., 76 (2009) 86-93.
DOI: 10.1016/j.carbpol.2008.09.028
Google Scholar
[11]
I. J. Ogaji, I. S. Okafor, S. W. Hoag, Some Characteristics of Theophylline Tablets Coated with Samples of Grewia Gum obtained from a Novel Extraction, J. Pharm Drug Deliv Res., (2014).
DOI: 10.4172/2325-9604.1000120
Google Scholar
[12]
J, Muazu, H. Musa, K. Y Musa, Compression, mechanical and release properties of paracetamol tablets containing acid treated Grewia gum, J Pharm Sci Technol., 1 (2009) 74.
Google Scholar
[13]
O. J. Olayemi, T. S. Allagh, R. A. Oyi, A.B. Isah, I. S. Okafor, A. G. Olayemi, Evaluation of Ibuprofen Colon Delivery System using Grewia mollis Juss. (Tiliaceae) stem bark gum as Matrix-former, J. Pharm Sci., 5 (2015) 3.
DOI: 10.5530/rjps.2015.3.5
Google Scholar
[14]
A.E. Panyoo, T. Boudjeko, A.L. Woguia, N. Njintang-Yanou, C. Gaiani, J. Scher, and C. M. F. Mbofung, Optimization of Variables for Aqueous Extraction of Gum from Grewia mollis Powder, Journal of Polymers, (2014).
DOI: 10.1155/2014/926850
Google Scholar
[15]
A. Rahimzadeha, F. Z. Ashtianib, A. Okhovat, Application of adaptive neuro-fuzzy inference system as a reliable approach for prediction of oily wastewater microfiltration permeate volume. . Journal of Environmental Chemical Engineering, 4 (2016).
DOI: 10.1016/j.jece.2015.12.011
Google Scholar
[16]
M. Amirinejad, N. Tavajohi-Hasankiadeh, S.S. Madaeni, M.A. Navarra, E. Rafiee, B. Scrosati, Adaptive neuro-fuzzy inference system and artificial neural network modeling of proton exchange membrane fuel cells based on nanocomposite and recast nafion membranes, Int. J. Energy Res., 37 (2013).
DOI: 10.1002/er.1929
Google Scholar
[17]
S. Heddam, A. Bermad, N. Dechemi, ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study, Environ. Monit. Assess., 184 (2012) 1953–(1971).
DOI: 10.1007/s10661-011-2091-x
Google Scholar
[18]
Q. Li, W.R. Chen, Z.X. Liu, S.K. Liu, W.M. Tian, A nonlinear fuel cell model based on adaptive neuro-fuzzy inference system, Appl. Mech. Mater., 13 (2013) 57– 1360.
DOI: 10.4028/www.scientific.net/amm.321-324.1357
Google Scholar
[19]
J. Sargolzaei, M. H. Asl, A. H Moghaddam, Membrane permeate flux and rejection factor prediction using intelligent systems, Desalination, 284 (2012) 92–99.
DOI: 10.1016/j.desal.2011.08.041
Google Scholar
[20]
A. Salahi, T. Mohammadi, R. Mosayebi Behbahani, M. Hemmati, Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: synthesis, characterization ANFIS modeling, and performance, J. Environ. Chem. Eng., 3 (2015).
DOI: 10.1016/j.jece.2014.10.021
Google Scholar
[21]
A. Hedayati and S. M. Ghoreishi. Artificial Neural Network and Adaptive Neuro-Fuzzy Interface System Modeling of Supercritical CO2 Extraction of Glycyrrhizic Acid from Glycyrrhiza glabra L. Chem. Prod, Process Model, 11 (2016) 217-230.
DOI: 10.1515/cppm-2015-0048
Google Scholar
[22]
Ö.S. Toker, M. T Yilmaz, S. Karaman, M. Dogan, A. Kayacier, Adaptive Neuro-fuzzy Inference System and Artificial Neural Network Estimation of Apparent Viscosity of Ice-cream Mixes Stabilized with Different Concentrations of Xanthan Gum, Applied Rheology, 22 (2012).
DOI: 10.1007/s11947-012-0872-z
Google Scholar
[23]
S. Chiu, Fuzzy Model Identification Based on Cluster Estimation, J. Intell Fuzzy Syst. 2 (1994) 3-5.
Google Scholar
[24]
S. Rezazadeh, M. Mehrabi, T. Pashaee, I. Mirzaee, Using adaptive neuro-fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modelling, J. Mech. Sci. Technol., 26 (2012) 3701–3709.
DOI: 10.1007/s12206-012-0844-2
Google Scholar