Modelling of Grewia mollis Stem Bark Gum Extraction Yield Using Neuro-Fuzzy Technique

Article Preview

Abstract:

In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) was used to model and predict Grewia Polysaccharide Gum (GPG) extraction yield from Grewia mollis (GM) powder/water system. The data for modelling the process behaviour consisted of four inputs (process temperature, GM powder/water ratio, process time and pH) and GPG yield as the output. The gbell Membership Function (MF) was used for the fuzzification of input variables and hybrid algorithm was chosen for the learning method of input–output data of the process. Simulation study was conducted on the developed ANFIS architecture at different MFs and epoch numbers to establish minimum error and maximum correlation coefficient (R) of the model. From the results obtained, ANFIS can be used as a reliable tool for modelling and prediction of GPG powder/water extraction process behaviour. The R between the experimental and predicted values was found to be high (> 0.96) and the mean percentage error was less than 2%, showing the great efficiency and reliability of the developed model.

You might also be interested in these eBooks

Info:

Pages:

70-80

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.I. Nep, B.R. Conway, Characterization of Grewia Gum, a potential pharmaceutical excipient, J. Excip Food Chem., 1 (2010) 30-40.

Google Scholar

[2] E.I. Nep, B.R. Conway, Grewia polysaccharide as a pharmaceutical excipient in matrix tablets, J. Excip Food Chem., 2 (1) 3-15.

Google Scholar

[3] I.J. Ogaji, S.W. Hoag, Effect of Grewia gum as a suspending agent on Ibuprofen paediatric formulation, AAPS Pharm Sci Tech., 12 (2011) 507-13.

DOI: 10.1208/s12249-011-9606-1

Google Scholar

[4] S.H. Sambo, O. Ahmed, S.M. Shaltoe, Phytochemical Screening and Mineral Analysis of Grewia mollis Stems Bark, Int. J. Biochem Res Rev., 6 (2015) 75-81.

DOI: 10.9734/ijbcrr/2015/14162

Google Scholar

[5] E.I. Nep, P.O. Odumosu, N.C. Ngwuluka, P.O. Olorunfemi, N.A. Ochekpe, Pharmaceutical Properties and Applications of a Natural Polymer from Grewia mollis, Journal of Polymers, (2013).

DOI: 10.1155/2013/938726

Google Scholar

[6] I. S. Okafor, The rheological properties of grewia gum, Nigeria Journal of Polymer Science and Technology, 2(2001) 169-175.

Google Scholar

[7] I. S. Okafor, A. Chukwu, Water vapour permeability of aqueous-based grewia gum film, Nigeria Journal of Polymer Science and Technology, 2 (2003), 176–182.

Google Scholar

[8] M. Emeje, C. Isimi, O. Kunle, Effect of Grewia gum on the mechanical properties of Paracetamol tablet formulations, Afr J Pharm Pharmacol., 2 (2008) 1-6.

Google Scholar

[9] I. S. Okafor, I. M. Danat, The influence of granulating solvents on drug release from tablets containing grewia gum, Journal of Pharmacy and Bioresources, 1 (2004) 76–83.

DOI: 10.4314/jpb.v1i1.32053

Google Scholar

[10] C.W. Vendruscolo, C. Ferrero, E.A.G. Pineda, Physicochemical and mechanical characterization of galactomannan from Mimosa scabrella: effect of drying method, Carbohydr Polym., 76 (2009) 86-93.

DOI: 10.1016/j.carbpol.2008.09.028

Google Scholar

[11] I. J. Ogaji, I. S. Okafor, S. W. Hoag, Some Characteristics of Theophylline Tablets Coated with Samples of Grewia Gum obtained from a Novel Extraction, J. Pharm Drug Deliv Res., (2014).

DOI: 10.4172/2325-9604.1000120

Google Scholar

[12] J, Muazu, H. Musa, K. Y Musa, Compression, mechanical and release properties of paracetamol tablets containing acid treated Grewia gum, J Pharm Sci Technol., 1 (2009) 74.

Google Scholar

[13] O. J. Olayemi, T. S. Allagh, R. A. Oyi, A.B. Isah, I. S. Okafor, A. G. Olayemi, Evaluation of Ibuprofen Colon Delivery System using Grewia mollis Juss. (Tiliaceae) stem bark gum as Matrix-former, J. Pharm Sci., 5 (2015) 3.

DOI: 10.5530/rjps.2015.3.5

Google Scholar

[14] A.E. Panyoo, T. Boudjeko, A.L. Woguia, N. Njintang-Yanou, C. Gaiani, J. Scher, and C. M. F. Mbofung, Optimization of Variables for Aqueous Extraction of Gum from Grewia mollis Powder, Journal of Polymers, (2014).

DOI: 10.1155/2014/926850

Google Scholar

[15] A. Rahimzadeha, F. Z. Ashtianib, A. Okhovat, Application of adaptive neuro-fuzzy inference system as a reliable approach for prediction of oily wastewater microfiltration permeate volume. . Journal of Environmental Chemical Engineering, 4 (2016).

DOI: 10.1016/j.jece.2015.12.011

Google Scholar

[16] M. Amirinejad, N. Tavajohi-Hasankiadeh, S.S. Madaeni, M.A. Navarra, E. Rafiee, B. Scrosati, Adaptive neuro-fuzzy inference system and artificial neural network modeling of proton exchange membrane fuel cells based on nanocomposite and recast nafion membranes, Int. J. Energy Res., 37 (2013).

DOI: 10.1002/er.1929

Google Scholar

[17] S. Heddam, A. Bermad, N. Dechemi, ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study, Environ. Monit. Assess., 184 (2012) 1953–(1971).

DOI: 10.1007/s10661-011-2091-x

Google Scholar

[18] Q. Li, W.R. Chen, Z.X. Liu, S.K. Liu, W.M. Tian, A nonlinear fuel cell model based on adaptive neuro-fuzzy inference system, Appl. Mech. Mater., 13 (2013) 57– 1360.

DOI: 10.4028/www.scientific.net/amm.321-324.1357

Google Scholar

[19] J. Sargolzaei, M. H. Asl, A. H Moghaddam, Membrane permeate flux and rejection factor prediction using intelligent systems, Desalination, 284 (2012) 92–99.

DOI: 10.1016/j.desal.2011.08.041

Google Scholar

[20] A. Salahi, T. Mohammadi, R. Mosayebi Behbahani, M. Hemmati, Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: synthesis, characterization ANFIS modeling, and performance, J. Environ. Chem. Eng., 3 (2015).

DOI: 10.1016/j.jece.2014.10.021

Google Scholar

[21] A. Hedayati and S. M. Ghoreishi. Artificial Neural Network and Adaptive Neuro-Fuzzy Interface System Modeling of Supercritical CO2 Extraction of Glycyrrhizic Acid from Glycyrrhiza glabra L. Chem. Prod, Process Model, 11 (2016) 217-230.

DOI: 10.1515/cppm-2015-0048

Google Scholar

[22] Ö.S. Toker, M. T Yilmaz, S. Karaman, M. Dogan, A. Kayacier, Adaptive Neuro-fuzzy Inference System and Artificial Neural Network Estimation of Apparent Viscosity of Ice-cream Mixes Stabilized with Different Concentrations of Xanthan Gum, Applied Rheology, 22 (2012).

DOI: 10.1007/s11947-012-0872-z

Google Scholar

[23] S. Chiu, Fuzzy Model Identification Based on Cluster Estimation, J. Intell Fuzzy Syst. 2 (1994) 3-5.

Google Scholar

[24] S. Rezazadeh, M. Mehrabi, T. Pashaee, I. Mirzaee, Using adaptive neuro-fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modelling, J. Mech. Sci. Technol., 26 (2012) 3701–3709.

DOI: 10.1007/s12206-012-0844-2

Google Scholar