Fault Diagnosis of a Wind Turbine Benchmark via Statistical and Support Vector Machine

Article Preview

Abstract:

This paper addresses the problem of fault detection and isolation (FDI) in wind turbine benchmark model using data driven and multi-class support vector machine (SVM) approach. Since, the fault detection is fundamental for any active system, isolation is similarly vital, and identification is decisive for fault reconfiguration as well as maintenance addition to monitoring purposes. The need for man-made dynamic system to work automatically when sensor, actuator, or system faults occur was constantly developed in order to increase reliability and decrease unavailability and maintenance costs. The key step of our approach based on extraction of mean features from sensors measurements by applying the statistical methods such as moving standard deviation and the exponential weighted moving average (EWMA). The fault detection step is invoked later based on the multi-class SVM classifier that decides the presence or not of the fault. Another important contribution of this paper is the simulation of combined sensor and actuator faults simultaneously for the first time in wind turbine benchmark model. The FDI performances are illustrated through simulation study for seven different scenario tests. The results demonstrate clearly the effectiveness of statistical and SVM approach to detect and isolate single, multiple sensor and actuator faults and outperforms many results reported in the literature for solving this problem.

You might also be interested in these eBooks

Info:

Pages:

29-42

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. L. Panwar, S. C. Kaushik, S. Kothari. Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, vol. 15, no 3, pp.1513-1524, (2011).

DOI: 10.1016/j.rser.2010.11.037

Google Scholar

[2] T. Ackermann. Wind power in power systems. John Wiley & Sons, (2005).

Google Scholar

[3] F. Blaabjerg, K. Ma. Future on power electronics for wind turbine systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no 3, pp.139-152, (2013).

DOI: 10.1109/jestpe.2013.2275978

Google Scholar

[4] C. C. Ciang, J. R. Lee, H. J. Bang. Structural health monitoring for a wind turbine system: a review of damage detection methods. Measurement Science and Technology, vol. 19, no 12, p.122001, (2008).

DOI: 10.1088/0957-0233/19/12/122001

Google Scholar

[5] C. Svärd, M. Nyberg, Automated Design of an FDI-System for the Wind Turbine Benchmark. Presented at the Proceedings of the 18th IFAC World Congress, 2011, Milano, Italy, pp.8307-8315.

DOI: 10.3182/20110828-6-it-1002.00618

Google Scholar

[6] R. M. Fernandez-canti,., J. Blesa, S. Tornil-sin, Sebastian, V. Puig. Fault detection and isolation for a wind turbine benchmark using a mixed Bayesian/Set-membership approach. Annual Reviews in Control, 2015, vol. 40, pp.59-69.

DOI: 10.1016/j.arcontrol.2015.08.002

Google Scholar

[7] Z. Zhao, C. Wang, Y. Zhang, et al.  Latest progress of fault detection and localization in complex Electrical Engineering. Journal of Electrical Engineering, vol. 65, no 1, pp.55-59, (2014).

DOI: 10.2478/jee-2014-0008

Google Scholar

[8] O. Benzineb, F. TAIBI, T.M LALEG-KIRATI, et al. Control and fault diagnosis based sliding mode observer of a multicellular converter: Hybrid approach. Journal of Electrical Engineering, vol. 64, no 1, pp.20-30, (2013).

DOI: 10.2478/jee-2013-0003

Google Scholar

[9] W. Teng, X. Ding, Y. Zhang, A. Kusiak . Application of cyclic coherence function to bearing fault detection in a wind turbine generator under electromagnetic vibration. Mechanical Systems and Signal Processing, vol. 87, pp.279-293, (2017).

DOI: 10.1016/j.ymssp.2016.10.026

Google Scholar

[10] R. Bi, C. Zhou, and D. M. Hepburn.  Detection and classification of faults in pitch-regulated wind turbine generators using normal behavior models based on performance curves. Renewable Energy, (2016).

DOI: 10.1016/j.renene.2016.12.075

Google Scholar

[11] H. Badihia, Y. Zhanga, H. Hong. Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches. Applied Energy, vol. 181, (2017).

DOI: 10.1016/j.apenergy.2016.12.096

Google Scholar

[12] M. Khireddine and A. Boutarfa. Reconfigurable control for a scara robot using RBF networks. Journal of Electrical Engineering, vol. 61, no 2, pp.100-106, (2010).

DOI: 10.2478/v10187-010-0014-7

Google Scholar

[13] S. Pourmohammad and A. Fekih. Fault-Tolerant control of wind turbine systems-A review. In : IEEE Green Technologies Conference (IEEE-Green). IEEE, pp.1-6, (2011).

DOI: 10.1109/green.2011.5754880

Google Scholar

[14] J. Lan, R.J. Patton, and X. Zhu. Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation. Renewable Energy, (2016).

DOI: 10.1016/j.renene.2016.12.005

Google Scholar

[15] F. Shi, F. Patton. An active fault tolerant control approach to an offshore wind turbine model. Renewable Energy, vol. 75, pp.788-798, (2015).

DOI: 10.1016/j.renene.2014.10.061

Google Scholar

[16] P. F. Odgaard, J. Stoustrup and M. Kinnaert. Fault-tolerant control of wind turbines: A benchmark model. IEEE Transactions on Control Systems Technology, vol. 21, no 4, pp.1168-1182, (2013).

DOI: 10.1109/tcst.2013.2259235

Google Scholar

[17] J. J. Gertler. Survey of model-based failure detection and isolation in complex plants. IEEE Control systems magazine, vol. 8, no 6, pp.3-11, (1988).

DOI: 10.1109/37.9163

Google Scholar

[18] P. F. Odgaard, and J. Stoustrup. Unknown input observer based scheme for detecting faults in a wind turbine converter. Presented at IFAC Proceedings Volumes, vol. 42, no 8, pp.161-166, (2009).

DOI: 10.3182/20090630-4-es-2003.00027

Google Scholar

[19] P. L. Negre, V. Puig, and I. Pineda. Fault detection and isolation of a real wind turbine using LPV observers. Presented at IFAC Proceedings Volumes, vol. 44, no 1, pp.12372-12379, (2011).

DOI: 10.3182/20110828-6-it-1002.02742

Google Scholar

[20] F. Pöschke, S. Georg, and H. Schulte. Fault reconstruction using a Takagi-Sugeno sliding mode observer for the wind turbine benchmark. In : Control, UKACC International Conference on. IEEE. pp.456-461, (2014).

DOI: 10.1109/control.2014.6915183

Google Scholar

[21] S. Simani, S. Farsoni, and P. Castaldi. Fault diagnosis of a wind turbine benchmark via identified fuzzy models,. IEEE Transactions on Industrial Electronics, vol. 62, no 6, pp.3775-3782, (2015).

DOI: 10.1109/tie.2014.2364548

Google Scholar

[22] X. Zhang, Q. Zhang, S. Zhao, and al. Fault detection and isolation of the wind turbine benchmark: An estimation-based approach. Presented at IFAC Proceedings Volumes, vol. 44, no 1, pp.8295-8300, (2011).

DOI: 10.3182/20110828-6-it-1002.02808

Google Scholar

[23] J. Blesa, V. Puig, J. Romera, and al. Fault diagnosis of wind turbines using a set-membership approach. Presented at IFAC Proceedings Volumes, vol. 44, no 1, pp.8316-8321, (2011).

DOI: 10.3182/20110828-6-it-1002.01167

Google Scholar

[24] A. Mokhtari, M. Mohammed. An adaptive observer based FDI for wind turbine benchmark model. Presented at the 8th ICMIC (IEEE Explore), (2017).

DOI: 10.1109/icmic.2016.7804210

Google Scholar

[25] N. Laouti, O.S. Nida, and S. Othman. Support vector machines for fault detection in wind turbines. Presented at IFAC Proceedings Volumes, vol. 44 Networks, vol. 13, no 2, pp.415-425, 2002., no 1, pp.7067-7072, (2011).

DOI: 10.3182/20110828-6-it-1002.02560

Google Scholar

[26] N. Laouti, S. Othman, M. Alamir, N. Sheibat-Othman, Combination of modelbased observer and support vector machines for fault detection of wind turbines, Int. J. Autom. Comput. Vol. 11 no 3 pp.274-287, (2014).

DOI: 10.1007/s11633-014-0790-9

Google Scholar

[27] J. Dong and M. Verhaegen. Data driven fault detection and isolation of a wind turbine benchmark. Presented at IFAC Proceedings Volumes, vol. 44, no 1, pp.7086-7091, (2011).

DOI: 10.3182/20110828-6-it-1002.00546

Google Scholar

[28] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, Large margin DAG's for multiclass classification, Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, vol. 12, p.547–553, (2000).

Google Scholar

[29] J. V. Debessa, R. M. Palhares, M. F. S. V D'angelo, and al. Data-driven fault detection and isolation scheme for a wind turbine benchmark. Renewable Energy, vol. 87, pp.634-645, (2016).

DOI: 10.1016/j.renene.2015.10.061

Google Scholar

[30] S. H. Steiner. EWMA control charts with time-varying control limits and fast initial response. Journal of Quality Technology, vol. 31, no 1, p.75, (1999).

DOI: 10.1080/00224065.1999.11979899

Google Scholar

[31] A. K. Patel and J. Divecha. Modified exponentially weighted moving average (EWMA) control chart for an analytical process data. Journal of Chemical Engineering and Materials Science, vol. 2, no 1, pp.12-20, (2011).

Google Scholar

[32] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard, and V. Vapnik, Comparison of classifier methods: A case study in handwriting digit recognition, Proc. Int. Conf. Pattern Recognition, p.77–87, (1994).

DOI: 10.1109/icpr.1994.576879

Google Scholar

[33] C.W. Hsu and C. J. Lin. A comparison of methods for multiclass support vector machines. IEEE transactions on Neural.

Google Scholar

[34] H. E. Merritt, Hydraulic Control Systems. New York, NY, USA: Wiley, (1967).

Google Scholar

[35] C. Gardiner. Stochastic methods. Berlin : springer, (2009).

Google Scholar

[36] S. Tufféry. Data mining and statistics for decision making. John Wiley & Sons, (2011).

Google Scholar

[37] S. Knerr, L. Personnaz and G. Dreyfus, Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Neurocomputing. Springer Berlin Heidelberg. pp.41-50, (1990).

DOI: 10.1007/978-3-642-76153-9_5

Google Scholar

[38] P. F. Odgaard and J. Stoustrup. Results of a wind turbine FDI competition. Presented at IFAC Proceedings Volumes, vol. 45, no 20, pp.102-107, (2012).

DOI: 10.3182/20120829-3-mx-2028.00015

Google Scholar

[39] A. A. Ozdemir, P. Seiler, and G. J. Balas,. Wind turbine fault detection using counter-based residual thresholding. Presented at IFAC Proceedings Volumes, vol. 44, no 1, pp.8289-8294, (2011).

DOI: 10.3182/20110828-6-it-1002.01758

Google Scholar

[40] W. Chen, S. X. Ding, A. H. A. Sari, A. Naik, A. Q. Khan, and S. Yin, Observer-based FDI schemes for wind turbine benchmark, in Proc. IFAC World Congr, p.7073–7078, (2011).

DOI: 10.3182/20110828-6-it-1002.03469

Google Scholar