[1]
N. L. Panwar, S. C. Kaushik, S. Kothari. Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, vol. 15, no 3, pp.1513-1524, (2011).
DOI: 10.1016/j.rser.2010.11.037
Google Scholar
[2]
T. Ackermann. Wind power in power systems. John Wiley & Sons, (2005).
Google Scholar
[3]
F. Blaabjerg, K. Ma. Future on power electronics for wind turbine systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no 3, pp.139-152, (2013).
DOI: 10.1109/jestpe.2013.2275978
Google Scholar
[4]
C. C. Ciang, J. R. Lee, H. J. Bang. Structural health monitoring for a wind turbine system: a review of damage detection methods. Measurement Science and Technology, vol. 19, no 12, p.122001, (2008).
DOI: 10.1088/0957-0233/19/12/122001
Google Scholar
[5]
C. Svärd, M. Nyberg, Automated Design of an FDI-System for the Wind Turbine Benchmark. Presented at the Proceedings of the 18th IFAC World Congress, 2011, Milano, Italy, pp.8307-8315.
DOI: 10.3182/20110828-6-it-1002.00618
Google Scholar
[6]
R. M. Fernandez-canti,., J. Blesa, S. Tornil-sin, Sebastian, V. Puig. Fault detection and isolation for a wind turbine benchmark using a mixed Bayesian/Set-membership approach. Annual Reviews in Control, 2015, vol. 40, pp.59-69.
DOI: 10.1016/j.arcontrol.2015.08.002
Google Scholar
[7]
Z. Zhao, C. Wang, Y. Zhang, et al. Latest progress of fault detection and localization in complex Electrical Engineering. Journal of Electrical Engineering, vol. 65, no 1, pp.55-59, (2014).
DOI: 10.2478/jee-2014-0008
Google Scholar
[8]
O. Benzineb, F. TAIBI, T.M LALEG-KIRATI, et al. Control and fault diagnosis based sliding mode observer of a multicellular converter: Hybrid approach. Journal of Electrical Engineering, vol. 64, no 1, pp.20-30, (2013).
DOI: 10.2478/jee-2013-0003
Google Scholar
[9]
W. Teng, X. Ding, Y. Zhang, A. Kusiak . Application of cyclic coherence function to bearing fault detection in a wind turbine generator under electromagnetic vibration. Mechanical Systems and Signal Processing, vol. 87, pp.279-293, (2017).
DOI: 10.1016/j.ymssp.2016.10.026
Google Scholar
[10]
R. Bi, C. Zhou, and D. M. Hepburn. Detection and classification of faults in pitch-regulated wind turbine generators using normal behavior models based on performance curves. Renewable Energy, (2016).
DOI: 10.1016/j.renene.2016.12.075
Google Scholar
[11]
H. Badihia, Y. Zhanga, H. Hong. Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches. Applied Energy, vol. 181, (2017).
DOI: 10.1016/j.apenergy.2016.12.096
Google Scholar
[12]
M. Khireddine and A. Boutarfa. Reconfigurable control for a scara robot using RBF networks. Journal of Electrical Engineering, vol. 61, no 2, pp.100-106, (2010).
DOI: 10.2478/v10187-010-0014-7
Google Scholar
[13]
S. Pourmohammad and A. Fekih. Fault-Tolerant control of wind turbine systems-A review. In : IEEE Green Technologies Conference (IEEE-Green). IEEE, pp.1-6, (2011).
DOI: 10.1109/green.2011.5754880
Google Scholar
[14]
J. Lan, R.J. Patton, and X. Zhu. Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation. Renewable Energy, (2016).
DOI: 10.1016/j.renene.2016.12.005
Google Scholar
[15]
F. Shi, F. Patton. An active fault tolerant control approach to an offshore wind turbine model. Renewable Energy, vol. 75, pp.788-798, (2015).
DOI: 10.1016/j.renene.2014.10.061
Google Scholar
[16]
P. F. Odgaard, J. Stoustrup and M. Kinnaert. Fault-tolerant control of wind turbines: A benchmark model. IEEE Transactions on Control Systems Technology, vol. 21, no 4, pp.1168-1182, (2013).
DOI: 10.1109/tcst.2013.2259235
Google Scholar
[17]
J. J. Gertler. Survey of model-based failure detection and isolation in complex plants. IEEE Control systems magazine, vol. 8, no 6, pp.3-11, (1988).
DOI: 10.1109/37.9163
Google Scholar
[18]
P. F. Odgaard, and J. Stoustrup. Unknown input observer based scheme for detecting faults in a wind turbine converter. Presented at IFAC Proceedings Volumes, vol. 42, no 8, pp.161-166, (2009).
DOI: 10.3182/20090630-4-es-2003.00027
Google Scholar
[19]
P. L. Negre, V. Puig, and I. Pineda. Fault detection and isolation of a real wind turbine using LPV observers. Presented at IFAC Proceedings Volumes, vol. 44, no 1, pp.12372-12379, (2011).
DOI: 10.3182/20110828-6-it-1002.02742
Google Scholar
[20]
F. Pöschke, S. Georg, and H. Schulte. Fault reconstruction using a Takagi-Sugeno sliding mode observer for the wind turbine benchmark. In : Control, UKACC International Conference on. IEEE. pp.456-461, (2014).
DOI: 10.1109/control.2014.6915183
Google Scholar
[21]
S. Simani, S. Farsoni, and P. Castaldi. Fault diagnosis of a wind turbine benchmark via identified fuzzy models,. IEEE Transactions on Industrial Electronics, vol. 62, no 6, pp.3775-3782, (2015).
DOI: 10.1109/tie.2014.2364548
Google Scholar
[22]
X. Zhang, Q. Zhang, S. Zhao, and al. Fault detection and isolation of the wind turbine benchmark: An estimation-based approach. Presented at IFAC Proceedings Volumes, vol. 44, no 1, pp.8295-8300, (2011).
DOI: 10.3182/20110828-6-it-1002.02808
Google Scholar
[23]
J. Blesa, V. Puig, J. Romera, and al. Fault diagnosis of wind turbines using a set-membership approach. Presented at IFAC Proceedings Volumes, vol. 44, no 1, pp.8316-8321, (2011).
DOI: 10.3182/20110828-6-it-1002.01167
Google Scholar
[24]
A. Mokhtari, M. Mohammed. An adaptive observer based FDI for wind turbine benchmark model. Presented at the 8th ICMIC (IEEE Explore), (2017).
DOI: 10.1109/icmic.2016.7804210
Google Scholar
[25]
N. Laouti, O.S. Nida, and S. Othman. Support vector machines for fault detection in wind turbines. Presented at IFAC Proceedings Volumes, vol. 44 Networks, vol. 13, no 2, pp.415-425, 2002., no 1, pp.7067-7072, (2011).
DOI: 10.3182/20110828-6-it-1002.02560
Google Scholar
[26]
N. Laouti, S. Othman, M. Alamir, N. Sheibat-Othman, Combination of modelbased observer and support vector machines for fault detection of wind turbines, Int. J. Autom. Comput. Vol. 11 no 3 pp.274-287, (2014).
DOI: 10.1007/s11633-014-0790-9
Google Scholar
[27]
J. Dong and M. Verhaegen. Data driven fault detection and isolation of a wind turbine benchmark. Presented at IFAC Proceedings Volumes, vol. 44, no 1, pp.7086-7091, (2011).
DOI: 10.3182/20110828-6-it-1002.00546
Google Scholar
[28]
J. C. Platt, N. Cristianini, and J. Shawe-Taylor, Large margin DAG's for multiclass classification, Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, vol. 12, p.547–553, (2000).
Google Scholar
[29]
J. V. Debessa, R. M. Palhares, M. F. S. V D'angelo, and al. Data-driven fault detection and isolation scheme for a wind turbine benchmark. Renewable Energy, vol. 87, pp.634-645, (2016).
DOI: 10.1016/j.renene.2015.10.061
Google Scholar
[30]
S. H. Steiner. EWMA control charts with time-varying control limits and fast initial response. Journal of Quality Technology, vol. 31, no 1, p.75, (1999).
DOI: 10.1080/00224065.1999.11979899
Google Scholar
[31]
A. K. Patel and J. Divecha. Modified exponentially weighted moving average (EWMA) control chart for an analytical process data. Journal of Chemical Engineering and Materials Science, vol. 2, no 1, pp.12-20, (2011).
Google Scholar
[32]
L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard, and V. Vapnik, Comparison of classifier methods: A case study in handwriting digit recognition, Proc. Int. Conf. Pattern Recognition, p.77–87, (1994).
DOI: 10.1109/icpr.1994.576879
Google Scholar
[33]
C.W. Hsu and C. J. Lin. A comparison of methods for multiclass support vector machines. IEEE transactions on Neural.
Google Scholar
[34]
H. E. Merritt, Hydraulic Control Systems. New York, NY, USA: Wiley, (1967).
Google Scholar
[35]
C. Gardiner. Stochastic methods. Berlin : springer, (2009).
Google Scholar
[36]
S. Tufféry. Data mining and statistics for decision making. John Wiley & Sons, (2011).
Google Scholar
[37]
S. Knerr, L. Personnaz and G. Dreyfus, Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Neurocomputing. Springer Berlin Heidelberg. pp.41-50, (1990).
DOI: 10.1007/978-3-642-76153-9_5
Google Scholar
[38]
P. F. Odgaard and J. Stoustrup. Results of a wind turbine FDI competition. Presented at IFAC Proceedings Volumes, vol. 45, no 20, pp.102-107, (2012).
DOI: 10.3182/20120829-3-mx-2028.00015
Google Scholar
[39]
A. A. Ozdemir, P. Seiler, and G. J. Balas,. Wind turbine fault detection using counter-based residual thresholding. Presented at IFAC Proceedings Volumes, vol. 44, no 1, pp.8289-8294, (2011).
DOI: 10.3182/20110828-6-it-1002.01758
Google Scholar
[40]
W. Chen, S. X. Ding, A. H. A. Sari, A. Naik, A. Q. Khan, and S. Yin, Observer-based FDI schemes for wind turbine benchmark, in Proc. IFAC World Congr, p.7073–7078, (2011).
DOI: 10.3182/20110828-6-it-1002.03469
Google Scholar