Temperature Effect on Mechanical Properties of Carbon, Glass and Hybrid Polymer Composite Specimens

Article Preview

Abstract:

This paper presents the results of an experimental program to study the mechanical properties of currently available composite materials for the construction of wind turbine blade. The materials identified for this purpose include unidirectional glass fibre/epoxy (GFRP), carbon fibre/epoxy (CFRP) and hybrid combinations of these two materials to be used in a laminated design and at elevated temperatures. The tests conducted in the present programme includes short beam shear test and dynamic mechanical analysis tests after the specimens are exposed to temperatures ranging from 25 to 140°C. The results indicate that the inter-laminar shear failure strength and stiffness of GFRP, CFRP and hybrid specimens degrade with increasing temperature. However, the degradation is observed to be higher in single material specimens in comparison to hybrid specimens. In particular, stiffness of CFRP specimens decreased linearly as the temperature approached 40°C and increased up to the glass transition temperature of epoxy. Experimental results indicated that damping properties of Glass-Carbon-Glass/epoxy specimens improved at elevated temperatures which is important for noise and vibration control. In the present study, empirical models are proposed based on the test data to predict the variation of inter-laminar shear failure stress and stiffness as a function of temperature. The experimental results and proposed model can be used as input parameters to design and construct composite wind turbine blades to be used in tropical wind farms.

You might also be interested in these eBooks

Info:

Pages:

119-138

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jin Chen, Quan Wang, Wen Zhong Shen, Xiaoping Pang, Songlin Li, Xiaofeng Guo, Structural optimization study of composite wind turbine blade, Materials and Design, 46 (2013) 247-255.

DOI: 10.1016/j.matdes.2012.10.036

Google Scholar

[2] C, Kong, J. Bang, Y. Sugiyama, Structural investigation of composite wind turbine blade considering various load cases and fatique life, Energy, 30 (2005) 2101-2114.

DOI: 10.1016/j.energy.2004.08.016

Google Scholar

[3] F.M. Jensen, B.G. Falzon, J. Ankersen, H. Stang, Structural testing and numerical simulation of a 34m composite wind turbine blade, Composite Structures, 76 (2006) 52-61.

DOI: 10.1016/j.compstruct.2006.06.008

Google Scholar

[4] Kevin Cox, Andreas Echtermeyer, Structural design and anlysis of a 10MW wind turbine blade," Energy Procedia, 24 (2012) 194-201.

DOI: 10.1016/j.egypro.2012.06.101

Google Scholar

[5] Thomsen, Ole Thybo, Sandwich materials for wind turbine blades-present and future, Sandwich Structures and Materials, 11 (2009) 7-20.

DOI: 10.1177/1099636208099710

Google Scholar

[6] Sarp Adali, Viktor E. Verijenko, Minimum cost design of hybrid composite cylinders with temperature dependent properties. composite structures, Composite Structures, 38 (1997) 623-630.

DOI: 10.1016/s0263-8223(97)00100-1

Google Scholar

[7] Isaa Sfiso Radebe, Sarp Adali, Minimum cost design of hybrid cross-ply cylinders with uncertain material properties subject to external pressure, Ocean Engineering, 38 (2014) 310-317.

DOI: 10.1016/j.oceaneng.2014.06.010

Google Scholar

[8] P. Coronado, A. Arguelles, J. Vina, V. Mollon, I. Vina, Influence of temperature on a carbon-fibre epoxy composite subjected to static and fatique loading under mode-I delamination, International Journal of Solids and Structures, 49 (2012).

DOI: 10.1016/j.ijsolstr.2012.05.018

Google Scholar

[9] Rami A. Hawileh, Adi Abu-Obeidah, Jamel A. Abdalla, Adil Al-Tamimi, Temperature effect on mechanical propeties of carbon, glass and carbon-glass FRP laminates, Construction and Building Materials, 75 (2015) 342-348.

DOI: 10.1016/j.conbuildmat.2014.11.020

Google Scholar

[10] Zhongyu Lu, Guijun Xian, Hui Li, Effects of elevated temperatures on the mechanical properties of basalt fibers and BFRP plates, Construction and Building materials, 127 (2016) 1029-1036.

DOI: 10.1016/j.conbuildmat.2015.10.207

Google Scholar

[11] Andrew Makeev, Yihong He, Nonlinear shear behavior and interlaminar shear strength of unidirectional polymer matrix composites: A numerical study, International Journal of Solids and Structures, 51 (2014) 1263-1273.

DOI: 10.1016/j.ijsolstr.2013.12.014

Google Scholar

[12] Yu Bai, Thomas keller, Pultruded GFRP tubes with liquid-cooling system under combined temperature and compressive loading, Composite structures, 90 (2009) 115-121.

DOI: 10.1016/j.compstruct.2009.02.009

Google Scholar

[13] E.C. Botelho, L.C. Pardini, M.C. Rezende, Hygrothermal effects on the shear properties of carbon fiber/epoxy composites, J. Mater Sci , 41 (2006) 7111-7118.

DOI: 10.1007/s10853-006-0933-7

Google Scholar

[14] Ray. B.C, Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites, Journal of Colloid and Interface Science, 298 (2006) 111-117.

DOI: 10.1016/j.jcis.2005.12.023

Google Scholar

[15] P.J. Herrera-Franco, L.T. Drzal, Comparison of methods for the measurement of fibre/matrix adhesion in composites, Composite, 23 (1992) 2-26.

DOI: 10.1016/0010-4361(92)90282-y

Google Scholar

[16] Kenneth J. Bowles, Stephen Frimpong, Void Effects on the Interlaminar Shear Strength of Unidirectional Graphite-Fiber-Reinforced Composites, Journal of Composite Materials, 26 (1992) 1487-1509.

DOI: 10.1177/002199839202601006

Google Scholar

[17] F. Rosselli, M.H. Santare, Comparison of the short beam shear (SBS) and interlaminar shear device (ISD) tests, Composites Part A , 28A (1997) 587-594.

DOI: 10.1016/s1359-835x(97)00009-2

Google Scholar

[18] Zhihang Fan, Michael H. Santare, Suresh G. Advani, Interlaminar shear strenght of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes, composites: part A 39 (2008) 540-554.

DOI: 10.1016/j.compositesa.2007.11.013

Google Scholar

[19] Madtw S. Madhukar, Lawrence T. Drzal, Fiber-Matrix Adhesion and Its Effect on Composite Mechanical Properties: I. Inplane and Interlaminar Shear Behavior of Graphite/Epoxy Composites, Journal of Composite Materials, 25 (1991) 932-957.

DOI: 10.1177/002199839102500801

Google Scholar

[20] Michelle Leali Costaa, Sergio Frascino M. de Almeidaa, Mirabel Cerqueira Rezendeb, The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates, Composites Science and Technology, 61(2001).

DOI: 10.1016/s0266-3538(01)00157-9

Google Scholar

[21] N. Saba, M. Jawaid, Othman Y. Alothman, M.T. Paridah, A review on dynamic mechanical properties of natural fibre reinforced polymer composites, Construction and Building Materials, 106 (2016) 149-159.

DOI: 10.1016/j.conbuildmat.2015.12.075

Google Scholar

[22] S.N. Goyanes, P.G. Konig, J.D. Marconi, Dynamic Mechanical Analysis of Particulate-Filled Epoxy Resin, Journal of Applied Polymer Science, 88 (2013) 883-892.

DOI: 10.1002/app.11678

Google Scholar

[23] W.K. Goertzen, M.R. Kessler, Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair, Composites Part B: 38 (2007) 1-9.

DOI: 10.1016/j.compositesb.2006.06.002

Google Scholar

[24] R. Murugan, R. Ramesh, K. Padmanabhanc, Investigation on Static and Dynamic Mechanical Properties of Epoxy Based Woven Fabric Glass/Carbon Hybrid Composite Laminates, Procedia Engineering , 97 (2014) 459-468.

DOI: 10.1016/j.proeng.2014.12.270

Google Scholar

[25] ASTM standard D 3171, Standard test method for matrix digestion, United States of America, (1999).

Google Scholar

[26] J. A Quinn, Composites - Design Manual, Liverpool, L25 4SY, England, (2002).

Google Scholar

[27] G. Odegard, M. Kumosa, Elastic-plastic and failure properties of a unidrectional carbon/PMR-15 composite at room and elevated temperatures, Composites Science and Technology, 60 (2000) 2979-2988.

DOI: 10.1016/s0266-3538(00)00163-9

Google Scholar

[28] M. Jawaid, H.P.S. Abdul Khalil, Omar S. Alattas, Woven hybrid biocomposites: Dynamic mechanical and thermal properies, Composites: Part A, 43 (2012) 288-293.

DOI: 10.1016/j.compositesa.2011.11.001

Google Scholar

[29] Ferry JD, Viscoelastic properies of polymers, New York, John Wiley and Sons, inc:.(1980).

Google Scholar

[30] Yu Bai, Thomas Keller, Till Vallee, Modeling of stiffness of FRP composites under elevated tempratures, Composites Science and Technology, 68 (2008) 3099-3106.

DOI: 10.1016/j.compscitech.2008.07.005

Google Scholar

[31] A.G. Gibson, Y.S. Wu, J.T. Evans, Laminate theory analysis of composites under load in fire, Journal of Composite Materials, 40 (2006) 639-659.

DOI: 10.1177/0021998305055543

Google Scholar