Synthesis of Si-Based Refractory Compounds from Coconut Shell by Carbothermal Method

Article Preview

Abstract:

The synthesis of Si-based refractory compounds from coconut shells (CS) by carbothermal treatment was investigated. Coconut shells, an agro-waste was utilised in the processing of the Si-based refractory compounds in a single stage carbothermal processing route. The treatment scheduled was carried out in a conventional heat treatment furnace at a temperature window of (900-1900 °C) at 10 °C/min heating rate in a controlled atmosphere. X-ray Diffractometer (XRD) was used to analyzed and quantify the crystalline and amorphous phases in the reaction products. The results from Fourier transform infrared spectroscopy (FTIR) revealed that, the dominant functional groups present after the carbothermal treatment were mainly Si-O-Si and Si-C groups. Also, the XRD results showed that the polytypes are mainly of α-SiC type precipitating as hexagonal symmetry of 6H-SiC and 4H-SiC type. The silica polytypes amount to about 8-14 wt.% of the silica polytypes as observed for different processing temperatures adopted. However, the total yield of SiC-made up between 11 to 40 wt.% of the crystalline phases as identified by XRD from the process. It is evident that the adoption of this processing route is a viable option for the synthesis of coconut shells as potential reinforcement for composites design.

You might also be interested in these eBooks

Info:

Pages:

20-25

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Madakson, P.B., Yawas, D.S., Apasi. A., Int. J. Eng. Sci. & Tech, 4 (2012) 1190.

Google Scholar

[2] Romulo, N.A., Asian Paci Coc Comm, 1 (2013).

Google Scholar

[3] Gottipati, R., National Institute of Technology, Rourkela, (2012).

Google Scholar

[4] Gabriel, A.A., Int. J. Food Microbiol. 201, (2015) 7.

Google Scholar

[5] Gruca, M., Andel, T.R.V., Balslev, H., J. Ethnobiol. Ethnomed. 10, (2014) 60.

Google Scholar

[6] Tymczyna, L., Chmielowiec-korzeniowska, A., Paluszak, Z., Dobrowolska, M., Banach, M., Pulit, J. Acta Biochim. Pol. 60 (2013).

DOI: 10.18388/abp.2013_2052

Google Scholar

[7] Kumar, D., Kumar, G., Singh, C.P., Ultrason. Sonochem. 17 (2010) 555.

Google Scholar

[8] Rout, T., Pradhan, D., Singh, R.K, Kumari, N., J. Environ. Chem. Eng. 4 (2016) 3696.

Google Scholar

[9] Martin, H.P., Ecke, R., Müller, E., J. Eur. Ceram. Soc. 18, (1998) l73.

Google Scholar

[10] Lutsenko, V.G., Acta Mater. 56, (2008) 2450.

Google Scholar

[11] Adediran, A.A., Alaname, K.K., Oladele, I.O., Akinlabi, E.T., Cogent Eng. 5, (2018) 12.

Google Scholar

[12] Li, B., Zhang, C.R., Hu, H.F., Cao, Y.B., Qi, G.J., Liu, R.J., J. Mater. Eng. Perform. 16, (2007) 775.

Google Scholar

[13] Alaneme, K. K., Aluko, A.O. Sci. Iran. 19(4), (2012) 992.

Google Scholar

[14] Daramola, O.O., Adediran, A.A., Fadumiye, A.T., Leonar. Electr. J. Prac. Technol. 27 (2015) 107.

Google Scholar

[15] Wu, R., Zhou, K., Yue, C.Y., Wei, J., Pan, Y., Prog. Mater. Sc. 72, (2015) 1.

Google Scholar

[16] Chiew, Y.L., Cheong, K.L., Mater. Sci. Eng. B. 176, (2011) 951.

Google Scholar

[17] Wu, R. B., Pan, Y., Yang, G. Y.,Gao, M. X., Wu, L. L. Chen, J. J., Zhai, R., Lin, J. J. Phys. Chem. C, 111, (2007) 6233.

Google Scholar

[18] Alaneme, K. K., Adewale, T.M., Tribol. Ind. 35, (2013) 163.

Google Scholar

[19] Najafi, G., Fard, H.R., Rezaie, N., Powder Techn, 219, (2012) 202.

Google Scholar

[20] Fisher, G.R., Barnes, P., Phil. Magazine part B, 61, (1990) 217.

Google Scholar

[21] Kuang, J., Cao, W., Elder, S., Powder Tech, 247, (2013) 106.

Google Scholar

[22] Yoo, W.S., Matsunami, H., J. Appl. Phy., 70, (1991) 7124.

Google Scholar

[23] Sugiyama, S., M. Togaya J. Amer. Ceram. Soc. 84, (2001) 3013.

Google Scholar

[24] Kristic, V.D., J. Amer. Ceram. Soc. 75, (1992) 170.

Google Scholar

[25] Marie, B. J., Mater. Res. Bull. 13, (1978) 91.

Google Scholar

[26] Zhan, G.D., Xie, R.J., Mitomo, M., Kim, Y.W., J. Amer. Ceram. Soc. 84, (2001) 945.

Google Scholar

[27] Nersisyan, H.H., Hou, Y.B., Won, C.W., Powder Tech. 189, (2009) 48.

Google Scholar

[28] Yamada, O., Miyamoto, Y., Koizumi, M., J. Mater. Res. 1, (1986) 275.

Google Scholar

[29] Zhang, J., Jeong, J.C., Lee, J.H., Won, C.W., Kim, D.J., Kim. C.O., Mater. Res. Bull. 37, (2002) 319.

Google Scholar

[30] Mossino, P., Cer. Int. 30, (2004) 311.

Google Scholar

[31] Narayan, J., Raghunathan, R., Chowdhury, R., Jagannadham, K., J. of Appl. Phy. 75, (1994) 7252.

Google Scholar

[32] Yang, Y., Yang, K., Lin, Z.M., Li, J.T., Mater. Lett. 61, (2007) 671.

Google Scholar

[33] Yang, Y., Lin, Z.M., Li, J.T., J. Eur. Cer. Soc. 29, (2009) 175.

Google Scholar

[34] Gao, Y., Yang, Y., Qin, Z., Sun, Y., Springer, (2016).

Google Scholar

[35] Selvam, A., Nair, N.G., Singh, P., J. Mater. Sci. Lett. 17 (1998) 57.

Google Scholar

[36] Bello, S.A., Hassan, S.B., Agunsoye, J.O., Zebase Kana, M.G., Raheem, I.A., Tri. Ind. 37 (2015) 257.

Google Scholar

[37] Moharana, G.P., Nat. Inst. Tech. Rourkela, (2011).

Google Scholar

[38] Bledzki, A.K., Mamun, M.M., Volk, J., Comp. Sci. Technol. 70 (2010) 84.

Google Scholar

[39] Weimer, A.W., Nilsen, K.J., Cochran, G.A., Roach, R.P., Adv. Chem. Eng. J. 39, (1993) 493.

Google Scholar

[40] Li, Y., Wang, Q., Fan, H., Sang, S., Li, Y, Zhao. L., Ceram. Int. 40. (2014) 1481.

Google Scholar

[41] Hakeem, K R., Jawaid, M., Rashid, U., Biom. Bioener. Appl., (2015).

Google Scholar