A Bayesian Model for Optimum Supply of Spare Parts

Article Preview

Abstract:

The need to have a stock of spare parts in a production company is very important in order to contract a continuity of service assurance. The costs of the stock are the costs of ownership, the costs of purchases and the costs of breaking the stock. In summary, the estimation of the needs of the stock is done mostly through quantitative methods while minimizing the costs.In this paper, we will first present our Bayesian model developed taking into account the obsolescence risk that is related to the life of parts, in order to determine the combination of new and recycled parts in quantities. After, we will expose some of the decision results of the simulation in order to clarify the operation of the bayesian networks. Finally, we will compare our model with the existing reference model and the bootstrap method for the purpose to see the influence of the parameters considered.

You might also be interested in these eBooks

Info:

Pages:

160-171

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zermati P., Pratique de la gestion des stocks, 4th edition, Dunod, (1990).

Google Scholar

[2] Javel G., Organisation et gestion de la production, 4e édition, Dunod, (2010).

Google Scholar

[3] Component Technical Work group – Technical Commission of the GEAD, Guide de management des obsolescences de composants électroniques, Electrical and Electromechanical, group French Industries Aeronautics and Space, Réf. GIFAS/5203/2005, October (2005).

Google Scholar

[4] Pillet M., Martin- C., Bonnefous P.,Courtois A., Gestion de production, 5th edition, Eyrolles, (2011).

Google Scholar

[5] Lasnier G., gestion des approvisionements et des stocks dans la chaine logistique, hermes science publications, octobre (2014).

Google Scholar

[6] Kostas-Platon A., Magou I., Dekker R., Tagaras G., Inventory control of spare parts using bayesian approach: case study, European journal of operational research,154 (2004) 730-739.

DOI: 10.1016/s0377-2217(02)00837-8

Google Scholar

[7] Panagiotidou Sofia, Joint optimization of spare parts ordering and maintenance policies for multiple identical items subject to silent failures, European Journal of Operational Research, 235 (3) (2014) 300-314.

DOI: 10.1016/j.ejor.2013.10.065

Google Scholar

[8] Topan E., Bayndir Z. P., Tan T., Heuristics for multi item two echelon spare parts inventory control problem with batch ordering in the central warehouse, beta research school for operation management and logistics, beta working paper 321 (2010).

DOI: 10.1016/j.orl.2010.05.006

Google Scholar

[9] Bounou O., El Barkany A., El Biyaali A., Inventory Models for Spare Parts Management: A Review, International Journal of Engineering Research in Africa, 28 (2017) 182-198.

DOI: 10.4028/www.scientific.net/jera.28.182

Google Scholar

[10] European Consumer Center, L'obsolescence programmée ou les dérives de la société de consommation, september (2010).

Google Scholar

[11] Bergman J. J., A BAYESIAN APPROACH TO DEMAND FORECASTING, Master's thesis, University of Missouri-Columbia, December (2014).

Google Scholar

[12] Can Wan, Zhao Xu, Yelei Wang, Zhao Yang Dong et Kit Po Wong, A Hybrid Approach for Probabilistic Forecasting of Electricity Price,  IEEE Transactions on Smart Grid, 5 (1) (2014) 463- 470.

DOI: 10.1109/tsg.2013.2274465

Google Scholar

[13] Chen xi Zhou, S. Viswanathan, Comparison of a new bootstrapping method with parametric approaches for safety stock determination in service parts inventory systems, Int. J. Production Economics, 133 (2011) 481–485.

DOI: 10.1016/j.ijpe.2010.09.021

Google Scholar

[14] Aris A. Syntetos, M. Zied Babai, Everette S. Gardner Jr., Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping, Journal of Business Research, 68 (2015) 1746–1752.

DOI: 10.1016/j.jbusres.2015.03.034

Google Scholar

[15] Ghorbel N., Gestion des réapprovisionnements périodiques des pièces de rechange sous incertitudes pour le MCO de parc matériels : maitrise de risque de rupture des stocks, PhD Thesis, Vincennes Saint-Denis Paris 8 university, France, (2013).

DOI: 10.53102/1984.3.01-2.39

Google Scholar

[16] Naim P., Wuillemin P. H., Leray P., Pourret O., Becker A., Réseaux bayésiens, third edition, eyrolles, (2007).

Google Scholar

[17] Ghorbel N., Duta L., Addouche S-A, EL Mhamedi A., L'intégration de l'incertitude dans la gestion des stocks des pièces de rechange, CIGI Saint-Sauveur, Québec, Canada, 12-13-14 october (2011).

Google Scholar

[18] Bouzy B., Réseaux Bayésiens, 3 February (2014).

Google Scholar

[19] Brown G. W., Lu J. Y., Wolfson Robbert J., Dynamic modeling of inventories subject to obsolescence, Management Science, 11 (1964) 51-63.

DOI: 10.1287/mnsc.11.1.51

Google Scholar

[20] Jaarsveld W. V., Dekker R., Estimating obsolescence risk from demand data - a case study, Int. J. Production Economics, 133 (2011) 423-431.

DOI: 10.1016/j.ijpe.2010.06.014

Google Scholar

[21] Cobbaert K., Van Oudheusden D., Inventory models for fast moving spare parts subject to sudden death obsolescence, Int. J. Production Economics, 44 (1996) 239-248.

DOI: 10.1016/0925-5273(96)00062-x

Google Scholar

[22] Ghorbel N., Addouches A, EL Mhamedi A., Boujelbene Y., Bayesian approach for spare parts replenishment policies under uncertainties, International Journal of Engineering Research and Development, 10 (11) (2014) 28-45.

Google Scholar

[23] Bounou O., El Barkany A., El Biyaali A., Parametric Approaches for Spare Parts Demand, International Journal of Supply Chain Management, 7(4) (2018) 432-439.

DOI: 10.1109/logistiqua.2017.7962899

Google Scholar