[1]
S. P. Raut, R. V. Ralegaonkar and S. Mandavgane, Development of sustainable construction material using industrial and agricultural solid waste: a review of waste-create bricks,, Construction and Building Materials, pp.4037-4042, (2011).
DOI: 10.1016/j.conbuildmat.2011.04.038
Google Scholar
[2]
S. Odeyemi, M. Akinpelu, O. Atoyebi and R. Yahaya, Determination of Load Carrying Capacity of Clay Bricks Reinforced With Straw,, Int. J. Sustain. Constr. Eng. Technol., vol. 8, p.2180–3242, (2017).
Google Scholar
[3]
O. D. Atoyebi, S. O. Odeyemi, S. A. Bello and C. O. Ogbeifun, Splitting Tensile Strength Assessment of Lightweight Foamed Concrete Reinforced with Waste Tyre Steel Fiber,, International Journal of Civil Engineering and Technology, vol. 9, no. 9, pp.1129-1137, (2018).
Google Scholar
[4]
J. Pinto, J. Vieira, H. Pereira, C. Jacinto, P. Vilela and A. Paiva, Corn cob lightweight concrete for non-structural applications,, Construction and Building Material, pp.346-351, (2012).
DOI: 10.1016/j.conbuildmat.2012.02.043
Google Scholar
[5]
X.-y. Zhou, F. Zheng, H.-g. Li and C.-l. Lu, An environment friendly thermal insulation material from cotton stalks fibers,, Energy and Building, vol. 42, pp.1070-1074, (2010).
DOI: 10.1016/j.enbuild.2010.01.020
Google Scholar
[6]
N. Chusilp, C. Jaturapitakku and K. Krattikomol, Utilization of bagasse ash as a pozzolanic material in concrete,, Construction Building Material, pp.3352-3358, (2009).
DOI: 10.1016/j.conbuildmat.2009.06.030
Google Scholar
[7]
K. Gunasekaran, R. Annadurai and P. S. Kumar, Plastic shrinkage and deflection characteristics of coconut shell concrete slab,, Construction Building Material, pp.203-207, (2013).
DOI: 10.1016/j.conbuildmat.2013.02.019
Google Scholar
[8]
P. Lertsutthiwong, S. Khunthon, K. Siralertmukul, K. Noomun and S. Chandrkrachang, New insulating particleboards prepared from mixture of solid wastes from tissue paper manufacturing and corn peel,, Bioresource Technology, pp.4841-4845, (2008).
DOI: 10.1016/j.biortech.2007.09.051
Google Scholar
[9]
O. Atoyebi and O. Sadiq, Experimental data on flexural strength of reinforced concrete elements with waste glass particles as partial replacement for fine aggregate,, Data in Brief, vol. 18, p.846–859, (2018).
DOI: 10.1016/j.dib.2018.03.104
Google Scholar
[10]
O. D. Atoyebi, T. F. Awolusi and I. E. Davies, Artificial neural network evaluation of cement-bonded particle board produced from red iron wood (Lophira alata) sawdust and palm kernel shell residues,,, Case Studies in Construction Materials, vol. 19, pp.2340-2343, (2018).
DOI: 10.1016/j.cscm.2018.e00185
Google Scholar
[11]
O. M. Sadiq and O. D. Atoyebi, Flexural strength determination of reinforced concrete elements with waste glass aspartialreplacementfor fine aggregate,,, NSE Tech. Trans. Journal of Nigerian Society of Engineers, vol. 49, p.74–81, (2015).
DOI: 10.1016/j.dib.2018.03.104
Google Scholar
[12]
V. M. Mangesh, V. R. Rahul and A. M. Sachin, Application of agro-waste for sustainable construction materials : A review,, Construction and Building Materials, vol. 38, pp.872-878, (2013).
DOI: 10.1016/j.conbuildmat.2012.09.011
Google Scholar
[13]
O. Atoyebi, S. Odeyemi and J. Orama, Experimental data on the splitting tensile strength of bamboo reinforced lateritic concrete using different culm sizes,,, Data in Brief, vol. 20, pp.1960-1964, (2018).
DOI: 10.1016/j.dib.2018.09.064
Google Scholar
[14]
N. Soon-Ching and L. Kaw-Sai, Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel,, Energy and Building, p.2452–2456, (2010).
DOI: 10.1016/j.enbuild.2010.08.026
Google Scholar
[15]
C. Hasse, M. Grenet, A. Bontemps, R. Dendievel and H. Sallée, Realization, test and modeling of honeycomb wallboards containing a phase change material,, Energy and Buildings, pp.232-238, (2011).
DOI: 10.1016/j.enbuild.2010.09.017
Google Scholar
[16]
N. Quaranta, M. Caligaris, H. López, M. Unsen, N. Lalla, M. Franzoy, M. Carrasco, J.Cotroni and M. Avenda., Addition of polymeric wastes as pore formers in ceramic lightweight bricks.,, Transactions on Ecology and the Environment, pp.447-458, (2010).
DOI: 10.2495/arc100381
Google Scholar
[17]
D. Adesanya and A. Raheem, A study of the workability and compressive strength characteristics of corn cob ash blended cement concrete,, Construction and Building Material, pp.311-317, (2009).
DOI: 10.1016/j.conbuildmat.2007.12.004
Google Scholar
[18]
D. Adesanya and A. Raheem, Development of Corn Cob Ash Blended Cement,, Construction and Building Materials, pp.347-352, (2009).
DOI: 10.1016/j.conbuildmat.2007.11.013
Google Scholar
[19]
D. Adesanya, The effects of thermal conductivity and chemical attack on corn cob ash blended cement.,, The Professional Builder, pp.3-10, (2001).
Google Scholar
[20]
J. Coutinho, The Combined benefits of CPF and Rice Husk Ash in improving the durability of Concrete Structures.,, Cement and Concrete Composites, pp.51-59, (2003).
DOI: 10.1016/s0958-9465(01)00055-5
Google Scholar
[21]
M. Nehdi, J. Duquette and A. El-Damatty, Performance of Rice Husk Ash produced using a new Technology as a Mineral Admixture in Concrete,, Cement and Concrete Research, pp.1203-1210, (2003).
DOI: 10.1016/s0008-8846(03)00038-3
Google Scholar
[22]
D. Bui, J. Hu and P. Stroeven, Particle size effect on the strength of Rice Husk Ash Blended Gap-Graded Portland Cement Concrete.,, Cement and Concrete Composites, pp.357-366, (2005).
DOI: 10.1016/j.cemconcomp.2004.05.002
Google Scholar
[23]
U. Tomas and G. Jr, Investigation on the Use of Pleko Ceiling Board for Heat Insulator and Sound Proofing Material Applications,, International Journal of Advanced Science and Technology, pp.23-32, (2014).
DOI: 10.14257/ijast.2014.66.03
Google Scholar
[24]
P. Anabela, S. Pereira, A. Sá, D. Cruz, H. Varum and J. Pinto, A contribution to the thermal insulation performance characterization of corncob particleboards.,, Energy and Building, pp.274-279, (2012).
DOI: 10.1016/j.enbuild.2011.11.019
Google Scholar
[25]
P. Soroushian and M. Hassan, Evaluation of cement-bonded strawboard against alternative cement-based siding products,,, Construction and Building Materials, pp.77-82, (2012).
DOI: 10.1016/j.conbuildmat.2012.02.011
Google Scholar
[26]
S. R. Karade, Cement-bonded composites from lignocellulosic wastes,, Construction and Building Materials, vol. 24, no. 8, pp.1323-1330, (2010).
DOI: 10.1016/j.conbuildmat.2010.02.003
Google Scholar
[27]
A.Ashori, T. Tabarsa and S. Sepahvand, Cement-bonded composite boards made from poplar strands,, Construction and Building Materials, vol. 26, pp.131-134, (2012).
DOI: 10.1016/j.conbuildmat.2011.06.001
Google Scholar
[28]
FAO, FAOSTAT,, 7 October 2016. [Online]. Available: http://faostat3.fao.org/search/ World%20maize%20producers/E.
Google Scholar
[29]
BS EN 317:1993, Particleboards and fiberboards. Determination of swelling in thickness after immersion into water,, British Standard Institution, London, (1993).
Google Scholar
[30]
BS EN 310:1993, Wood-based panels. Determination of modulus of elasticity in bending and of bending strength,, British Standard Institution, London, (1993).
DOI: 10.3403/00299457
Google Scholar
[31]
A.A208-1-1999, American National Standard Institute. American National Standard --Particleboard, Gaithersburg: Composite Panel Association, (1999).
Google Scholar
[32]
A.Olorunnisola and O. Adefisan, Trial production and testing of cement-bonded particleboard from rattan furniture waste,, Wood Fiber Science , vol. 34, no. 1, p.116–124, (2002).
Google Scholar
[33]
Olorunnisola, Strength and water absorption characteristics of cement bonded particleboard produced from coconut husk.,, Journal of Civil Engineering Research and Practices, vol. 3, no. 1, p.41–49, (2006).
DOI: 10.4314/jcerp.v3i1.29150
Google Scholar