[1]
M. T.Tran, Definition and Implementation of Voltage Stability Indices in PSS. M. Sc. Thesis, Chalmers University of Technology, Göteborg, Sweden, (2009).
Google Scholar
[2]
A. Oukennou, A. Sandali, Voltage Stability Indices Sensitivity Evaluation under Load Variation in Electrical Power System. 3rd Int. Conf. Electr. Inf. Technol. ICEIT, Rabat,Morocco, 15th to 18th Nov, Rabat,Morocco: 3rd International Conference on Electrical and Information Technologies ICEIT'2017 Voltage; (2017) 1–5.
DOI: 10.1109/eitech.2017.8255262
Google Scholar
[3]
A. R. Abul-Wafa, Optimal Capacitor Placement for Enhancing Voltage Stability in Distribution Systems using Analytical Algorithm and Fuzzy-Real Coded GA. Int J Electr Power Energy Syst.55 (2014) 246–52.
DOI: 10.1016/j.ijepes.2013.09.014
Google Scholar
[4]
T. Yuvaraj, K. Ravi, K. R. Devabalaji, DSTATCOM allocation in distribution networks considering load variations using bat algorithm. Ain Shams Eng J. 8 (2017) 391–403.
DOI: 10.1016/j.asej.2015.08.006
Google Scholar
[5]
P. Prabhakar, A. Kumar, Voltage Stability Boundary and Margin Enhancement with FACTS and HVDC. Int J Electr Power Energy Syst. 82 (2016) 429–38.
DOI: 10.1016/j.ijepes.2016.03.038
Google Scholar
[6]
E. Buraimoh, F.K. Ariyo, M. Omoigui, and I.E. Davidson, Investigation of Combined SVC and TCSC versus IPFC in Enhancing Power System Static Security,, International Journal of Engineering Research in Africa. 40 (2018) 119-135.
DOI: 10.4028/www.scientific.net/jera.40.119
Google Scholar
[7]
G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, W. D'haeseleer, Distributed generation: Definition, Benefits and Issues. Energy Policy. 33 (2005) 787–98.
DOI: 10.1016/j.enpol.2003.10.004
Google Scholar
[8]
M. Elshahed, Ma. Dawod, Z. H. Osman, Optimization of Real Power Loss and Voltage Stability Index for Distribution Systems with Distributed Generation. International Journal of Engineering Research in Africa. 33 (2017) 100–114.
DOI: 10.4028/www.scientific.net/jera.33.100
Google Scholar
[9]
W. El-Khattam, M. M. A. Salama, Distributed Generation Technologies, Definitions and Benefits. Electr Power Syst Res. 71 (2004) 119–28.
DOI: 10.1016/j.epsr.2004.01.006
Google Scholar
[10]
L. I. Dulău, M. Abrudean, D. Bică, Distributed Generation Technologies and Optimization. Procedia Technol. 12 (2014) 687–92.
DOI: 10.1016/j.protcy.2013.12.550
Google Scholar
[11]
Dieselserviceandsupply. Prime/Continuous Power vs. Standby/Backup Power. Dieselserviceandsupply 2018:http://www.dieselserviceandsupply.com/Prime_vs_Sta. (accessed August 17, 2018).
Google Scholar
[12]
Burtonwoodgroup. Prime/Continuous vs. Standby/Backup Power. Burtonwoodgroup 2018. http://www.burtonwoodgroup.com/gensets.html (accessed August 17, 2018).
Google Scholar
[13]
A. S.Yusuff, O. D. Adeniyi, M. Olutoye, and U. G. Akpan, Performance and Emission Characteristics of Diesel Engine Fuelled with Waste Frying Oil Derived Biodiesel-Petroleum Diesel Blend,, International Journal of Engineering Research in Africa. 32 (2017) 100-111.
DOI: 10.4028/www.scientific.net/jera.32.100
Google Scholar
[14]
S.M. Lawan, W. A. W. Z. Abidin, W. Y. Chai, A. Baharun, T. Masri, Wind Energy Potential in Kuching Areas of Sarawak for Small-Scale Power Application. International Journal of Engineering Research in Africa. 10 (2015) 1–10.
DOI: 10.4028/www.scientific.net/jera.15.1
Google Scholar
[15]
Samir Touili, A. A. Merrouni, Y. El-Hassouani, and A. I. Amrani, Performance Analysis of Large Scale Grid Connected PV Plants in the MENA Region,, International Journal of Engineering Research in Africa. 42 (2019) 139-148.
DOI: 10.4028/www.scientific.net/jera.42.139
Google Scholar
[16]
P. Mehta, P. Bhatt, V. Pandya, Optimal selection of distributed generating units and its placement for voltage stability enhancement and energy loss minimization. Ain Shams Eng J. 9 (2018) 187–201.
DOI: 10.1016/j.asej.2015.10.009
Google Scholar
[17]
B. B. Benuwa, B. Ghansah, D. K. Wornyo, and S. A. Adabunu, A Comprehensive Review of Particle Swarm Optimization,, International Journal of Engineering Research in Africa. 23 (2016) 141-161.
DOI: 10.4028/www.scientific.net/jera.23.141
Google Scholar
[18]
M. Sriramulu, M. R. Rahul, Optimal Placing and Sizing of DG in a Distribution System for Voltage Stability Improvement. Int. Conf. Electr. Electron. Optim. Tech. (ICEEOT), Chennai, Tamilnadu, India, 3rd to 5th March, Electrical, Electronics, and Optimization Techniques (ICEEOT), International Conference on. (2016) 1–7.
DOI: 10.1109/iceeot.2016.7754926
Google Scholar
[19]
M. Kumar, P. Nallagownden, I. Elamvazuthi, Optimal Placement and Sizing of Distributed Generators for Voltage-Dependent Load Model in Radial Distribution System. Renew Energy Focus. 19-20 (2017) 23–37.
DOI: 10.1016/j.ref.2017.05.003
Google Scholar
[20]
M. A. Saad, H. A. Abd el-Ghany, A. M. Azmy, Optimal DG Deployment to Improve Voltage Stability Margin Considering Load Variation. Ninet. Int. Middle East Power Syst. Conf. (MEPCON), Cairo, Egypt, 19th to 21th Dec., Cairo: IEEE. (2017) 1–7.
DOI: 10.1109/mepcon.2017.8301267
Google Scholar
[21]
M. Natarajan, R. Balamurugan, L. Lakshminarasimman, Optimal Placement and Sizing of DGs in the Distribution System for Loss Minimization and Voltage Stability Improvement Using CABC. Int J Electr Eng Informatics. 7 (2015) 679–90.
DOI: 10.15676/ijeei.2015.7.4.11
Google Scholar
[22]
D. R. Prabha, T. Jayabarathi, Optimal Placement and Sizing of Multiple Distributed Generating Units in Distribution Networks by Invasive Weed Optimization Algorithm. Ain Shams Eng J. 7 (2016) 683–94.
DOI: 10.1016/j.asej.2015.05.014
Google Scholar
[23]
M. M. Aman, G. B. Jasmon, A. H. A. Bakar, and H. Mokhlis, A new Approach for Optimum DG Placement and Sizing Based on Voltage Stability Maximization and Minimization of Power Losses. Energy Convers. Manag. 70 (2013) 202–210.
DOI: 10.1016/j.enconman.2013.02.015
Google Scholar
[24]
D. Devaraj, J. P. Roselyn, Genetic Algorithm Based Reactive Power Dispatch for Voltage Stability Improvement. Int J Electr Power Energy Syst. 32 (2010) 1151–6.
DOI: 10.1016/j.ijepes.2010.06.014
Google Scholar
[25]
B. Poornazaryan, P. Karimyan, G. B. Gharehpetian, M. Abedi, Optimal Allocation and Sizing of DG Units Considering Voltage Stability, Losses and Load Variations. Int J Electr Power Energy Syst. 79 (2016) 42–52.
DOI: 10.1016/j.ijepes.2015.12.034
Google Scholar
[26]
A. Zidan, M. F. Shaaban, E. F .El-Saadany, Long-Term Multi-Objective Distribution Network Planning by DG Allocation and Feeders' Reconfiguration. Electr Power Syst Res. 105 (2013) 95–104.
DOI: 10.1016/j.epsr.2013.07.016
Google Scholar
[27]
M. K. M. Ezzat, Economic Operation of Distributed Generating Units. M. Sc. Thesis,Tanta University, Tanta, Egypt, (2018).
Google Scholar
[28]
A. S. AE-S. Zalhaf, Contingency Constrained Reschedule for Gen- eration in the Presence of Distributed Units. M. Sc. Thesis,Tanta University, Tanta, Egypt, (2014).
Google Scholar
[29]
K. Uemura, N. Nakashima, Y. Nagata, I. Ono, A new Real-coded Genetic Algorithm for Implicit Constrained Black-box Function Optimization. 2013 IEEE Congr. Evol. Comput. (CEC), Cancún, México, 20th to 23th Jun. (2013) 2887–94.
DOI: 10.1109/cec.2013.6557920
Google Scholar
[30]
M. Thakur, S. S. Meghwani, and H. Jalota. A Modified Real Coded Genetic Algorithm for Constrained Optimization. Appl. Math. Comput. 235 (2014) 292–317.
DOI: 10.1016/j.amc.2014.02.093
Google Scholar
[31]
A. Wazir, N. Arbab, Analysis and Optimization of IEEE 33 Bus Radial Distributed System Using Optimization Algorithm. J Emerg Trends Appl Eng. 1 (2016) 2518–4059.
Google Scholar