Optimal DG Deployment Based on Technical and Economic Considerations with Daily Load Variation

Article Preview

Abstract:

The concept of distributed generation (DG) has been developed as a hopeful solution to meet the demand increase in distribution systems. The optimal DG deployment in the distribution system can improve the technical benefits. This study presents a framework to find the optimum location and size for different types of DG units to enhance the voltage stability index (VSI), improve the voltage regulation and reduce the daily energy losses. The emission effect and cost function (environment and economic benefits) are augmented in the multi-objective function. Combinations of DG types are introduced to obtain the best benefits from each one. The daily load variations and dynamic output of each DG type are considered in the problem formulation. The genetic algorithm (GA) technique is used to find the optimal allocation for different cases. The typical IEEE 33-bus system is utilized to evaluate the proposed framework.

You might also be interested in these eBooks

Info:

Pages:

115-131

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. T.Tran, Definition and Implementation of Voltage Stability Indices in PSS. M. Sc. Thesis, Chalmers University of Technology, Göteborg, Sweden, (2009).

Google Scholar

[2] A. Oukennou, A. Sandali, Voltage Stability Indices Sensitivity Evaluation under Load Variation in Electrical Power System. 3rd Int. Conf. Electr. Inf. Technol. ICEIT, Rabat,Morocco, 15th to 18th Nov, Rabat,Morocco: 3rd International Conference on Electrical and Information Technologies ICEIT'2017 Voltage; (2017) 1–5.

DOI: 10.1109/eitech.2017.8255262

Google Scholar

[3] A. R. Abul-Wafa, Optimal Capacitor Placement for Enhancing Voltage Stability in Distribution Systems using Analytical Algorithm and Fuzzy-Real Coded GA. Int J Electr Power Energy Syst.55 (2014) 246–52.

DOI: 10.1016/j.ijepes.2013.09.014

Google Scholar

[4] T. Yuvaraj, K. Ravi, K. R. Devabalaji, DSTATCOM allocation in distribution networks considering load variations using bat algorithm. Ain Shams Eng J. 8 (2017) 391–403.

DOI: 10.1016/j.asej.2015.08.006

Google Scholar

[5] P. Prabhakar, A. Kumar, Voltage Stability Boundary and Margin Enhancement with FACTS and HVDC. Int J Electr Power Energy Syst. 82 (2016) 429–38.

DOI: 10.1016/j.ijepes.2016.03.038

Google Scholar

[6] E. Buraimoh, F.K. Ariyo, M. Omoigui, and I.E. Davidson, Investigation of Combined SVC and TCSC versus IPFC in Enhancing Power System Static Security,, International Journal of Engineering Research in Africa. 40 (2018) 119-135.

DOI: 10.4028/www.scientific.net/jera.40.119

Google Scholar

[7] G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, W. D'haeseleer, Distributed generation: Definition, Benefits and Issues. Energy Policy. 33 (2005) 787–98.

DOI: 10.1016/j.enpol.2003.10.004

Google Scholar

[8] M. Elshahed, Ma. Dawod, Z. H. Osman, Optimization of Real Power Loss and Voltage Stability Index for Distribution Systems with Distributed Generation. International Journal of Engineering Research in Africa. 33 (2017) 100–114.

DOI: 10.4028/www.scientific.net/jera.33.100

Google Scholar

[9] W. El-Khattam, M. M. A. Salama, Distributed Generation Technologies, Definitions and Benefits. Electr Power Syst Res. 71 (2004) 119–28.

DOI: 10.1016/j.epsr.2004.01.006

Google Scholar

[10] L. I. Dulău, M. Abrudean, D. Bică, Distributed Generation Technologies and Optimization. Procedia Technol. 12 (2014) 687–92.

DOI: 10.1016/j.protcy.2013.12.550

Google Scholar

[11] Dieselserviceandsupply. Prime/Continuous Power vs. Standby/Backup Power. Dieselserviceandsupply 2018:http://www.dieselserviceandsupply.com/Prime_vs_Sta. (accessed August 17, 2018).

Google Scholar

[12] Burtonwoodgroup. Prime/Continuous vs. Standby/Backup Power. Burtonwoodgroup 2018. http://www.burtonwoodgroup.com/gensets.html (accessed August 17, 2018).

Google Scholar

[13] A. S.Yusuff, O. D. Adeniyi, M. Olutoye, and U. G. Akpan, Performance and Emission Characteristics of Diesel Engine Fuelled with Waste Frying Oil Derived Biodiesel-Petroleum Diesel Blend,, International Journal of Engineering Research in Africa. 32 (2017) 100-111.

DOI: 10.4028/www.scientific.net/jera.32.100

Google Scholar

[14] S.M. Lawan, W. A. W. Z. Abidin, W. Y. Chai, A. Baharun, T. Masri, Wind Energy Potential in Kuching Areas of Sarawak for Small-Scale Power Application. International Journal of Engineering Research in Africa. 10 (2015) 1–10.

DOI: 10.4028/www.scientific.net/jera.15.1

Google Scholar

[15] Samir Touili, A. A. Merrouni, Y. El-Hassouani, and A. I. Amrani, Performance Analysis of Large Scale Grid Connected PV Plants in the MENA Region,, International Journal of Engineering Research in Africa. 42 (2019) 139-148.

DOI: 10.4028/www.scientific.net/jera.42.139

Google Scholar

[16] P. Mehta, P. Bhatt, V. Pandya, Optimal selection of distributed generating units and its placement for voltage stability enhancement and energy loss minimization. Ain Shams Eng J. 9 (2018) 187–201.

DOI: 10.1016/j.asej.2015.10.009

Google Scholar

[17] B. B. Benuwa, B. Ghansah, D. K. Wornyo, and S. A. Adabunu, A Comprehensive Review of Particle Swarm Optimization,, International Journal of Engineering Research in Africa. 23 (2016) 141-161.

DOI: 10.4028/www.scientific.net/jera.23.141

Google Scholar

[18] M. Sriramulu, M. R. Rahul, Optimal Placing and Sizing of DG in a Distribution System for Voltage Stability Improvement. Int. Conf. Electr. Electron. Optim. Tech. (ICEEOT), Chennai, Tamilnadu, India, 3rd to 5th March, Electrical, Electronics, and Optimization Techniques (ICEEOT), International Conference on. (2016) 1–7.

DOI: 10.1109/iceeot.2016.7754926

Google Scholar

[19] M. Kumar, P. Nallagownden, I. Elamvazuthi, Optimal Placement and Sizing of Distributed Generators for Voltage-Dependent Load Model in Radial Distribution System. Renew Energy Focus. 19-20 (2017) 23–37.

DOI: 10.1016/j.ref.2017.05.003

Google Scholar

[20] M. A. Saad, H. A. Abd el-Ghany, A. M. Azmy, Optimal DG Deployment to Improve Voltage Stability Margin Considering Load Variation. Ninet. Int. Middle East Power Syst. Conf. (MEPCON), Cairo, Egypt, 19th to 21th Dec., Cairo: IEEE. (2017) 1–7.

DOI: 10.1109/mepcon.2017.8301267

Google Scholar

[21] M. Natarajan, R. Balamurugan, L. Lakshminarasimman, Optimal Placement and Sizing of DGs in the Distribution System for Loss Minimization and Voltage Stability Improvement Using CABC. Int J Electr Eng Informatics. 7 (2015) 679–90.

DOI: 10.15676/ijeei.2015.7.4.11

Google Scholar

[22] D. R. Prabha, T. Jayabarathi, Optimal Placement and Sizing of Multiple Distributed Generating Units in Distribution Networks by Invasive Weed Optimization Algorithm. Ain Shams Eng J. 7 (2016) 683–94.

DOI: 10.1016/j.asej.2015.05.014

Google Scholar

[23] M. M. Aman, G. B. Jasmon, A. H. A. Bakar, and H. Mokhlis, A new Approach for Optimum DG Placement and Sizing Based on Voltage Stability Maximization and Minimization of Power Losses. Energy Convers. Manag. 70 (2013) 202–210.

DOI: 10.1016/j.enconman.2013.02.015

Google Scholar

[24] D. Devaraj, J. P. Roselyn, Genetic Algorithm Based Reactive Power Dispatch for Voltage Stability Improvement. Int J Electr Power Energy Syst. 32 (2010) 1151–6.

DOI: 10.1016/j.ijepes.2010.06.014

Google Scholar

[25] B. Poornazaryan, P. Karimyan, G. B. Gharehpetian, M. Abedi, Optimal Allocation and Sizing of DG Units Considering Voltage Stability, Losses and Load Variations. Int J Electr Power Energy Syst. 79 (2016) 42–52.

DOI: 10.1016/j.ijepes.2015.12.034

Google Scholar

[26] A. Zidan, M. F. Shaaban, E. F .El-Saadany, Long-Term Multi-Objective Distribution Network Planning by DG Allocation and Feeders' Reconfiguration. Electr Power Syst Res. 105 (2013) 95–104.

DOI: 10.1016/j.epsr.2013.07.016

Google Scholar

[27] M. K. M. Ezzat, Economic Operation of Distributed Generating Units. M. Sc. Thesis,Tanta University, Tanta, Egypt, (2018).

Google Scholar

[28] A. S. AE-S. Zalhaf, Contingency Constrained Reschedule for Gen- eration in the Presence of Distributed Units. M. Sc. Thesis,Tanta University, Tanta, Egypt, (2014).

Google Scholar

[29] K. Uemura, N. Nakashima, Y. Nagata, I. Ono, A new Real-coded Genetic Algorithm for Implicit Constrained Black-box Function Optimization. 2013 IEEE Congr. Evol. Comput. (CEC), Cancún, México, 20th to 23th Jun. (2013) 2887–94.

DOI: 10.1109/cec.2013.6557920

Google Scholar

[30] M. Thakur, S. S. Meghwani, and H. Jalota. A Modified Real Coded Genetic Algorithm for Constrained Optimization. Appl. Math. Comput. 235 (2014) 292–317.

DOI: 10.1016/j.amc.2014.02.093

Google Scholar

[31] A. Wazir, N. Arbab, Analysis and Optimization of IEEE 33 Bus Radial Distributed System Using Optimization Algorithm. J Emerg Trends Appl Eng. 1 (2016) 2518–4059.

Google Scholar