Mission Critical Safety Functions in IEC-61850 Based Substation Automation System - A Reliability Review

Article Preview

Abstract:

The use of Substation Communication Networks (SCN) in power distribution centres of thermal power plants for protection, control and monitoring is increasing as industry’s confidence grows in the application of the IEC-61850 based Substation Automation Systems (SAS). IEC-61508, which is the standard for functional safety, addresses Electrical/Electronic/Programmable Electronic (E/E/PE) safety based technologies in so far as safety lifecycle as well as reliability and verification of safety related systems are concerned. It follows therefore, that Substation Communication Networks (SCN), as well as associated substation equipment that forms part of the overall safety system should satisfy the requirements of functional safety standard IEC-61508. In this paper, Substation Automation System standard (SAS) IEC-61850, Substation Communication Networks (SCNs) as well as dependability evaluation methods are reviewed and discussed.

You might also be interested in these eBooks

Info:

Pages:

149-161

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. C. Magro, P. Pinceti, and L. Rocca, Can we use IEC 61850 for safety related functions?,, in EEEIC 2016 - International Conference on Environment and Electrical Engineering, 2016, p.1–6.

DOI: 10.1109/eeeic.2016.7555402

Google Scholar

[2] R. Gore, H. Satheesh, M. Varier, and S. Valsan, Analysis of an IEC 61850 based Electric Substation Communication Architecture,, in Proceedings - International Conference on Intelligent Systems, Modelling and Simulation, ISMS, 2017, p.388–393.

DOI: 10.1109/isms.2016.85

Google Scholar

[3] I. Xyngi and M. Popov, IEC61850 overview - where protection meets communication,, no. April, pp. P46–P46, (2010).

DOI: 10.1049/cp.2010.0321

Google Scholar

[4] S. Roostaee, R. Hooshmand, and M. Ataei, Substation automation system using IEC 61850,, in 2011 5th International Power Engineering and Optimization Conference, PEOCO 2011 - Program and Abstracts, 2011, no. June, p.393–397.

DOI: 10.1109/peoco.2011.5970443

Google Scholar

[5] L. Ding, H. Wang, J. Jiang, and A. Xu, SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram,, Reliab. Eng. Syst. Saf., vol. 165, no. 114, p.170–187, (2017).

DOI: 10.1016/j.ress.2017.03.005

Google Scholar

[6] S. Nsaibi, L. Leurs, and H. D. Schotten, Formal and simulation-based timing analysis of industrial-ethernet sercos III over TSN,, Proc. - 2017 IEEE/ACM 21st Int. Symp. Distrib. Simul. Real Time Appl. DS-RT 2017, vol. 2017-Janua, p.1–8, (2017).

DOI: 10.1109/distra.2017.8167670

Google Scholar

[7] A. Elia, L. Ferrarini, C. Veber, and P. Milano, Analysis of Ethernet-based safe automation networks according to IEC 61508,, p.333–340, (2006).

DOI: 10.1109/etfa.2006.355419

Google Scholar

[8] Xin Yang, N. Das, and S. Islam, Analysis of IEC 61850 for a reliable communication system between substations,, in 2013 Australasian Universities Power Engineering Conference (AUPEC), 2014, no. October, p.1–6.

DOI: 10.1109/aupec.2013.6725482

Google Scholar

[9] V. C. Mathebula and A. K. Saha, Development of In-Phase Bus Transfer Scheme Using Matlab Simulink,, in Proceedings - 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa, SAUPEC/RobMech/PRASA 2019, 2019, no. 6, p.275–280.

DOI: 10.1109/robomech.2019.8704815

Google Scholar

[10] B. Falahati and E. Chua, Failure modes in IEC 61850-enabled substation automation systems,, Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., vol. 2016-July, (2016).

DOI: 10.1109/tdc.2016.7520066

Google Scholar

[11] M. S. Thomas and I. Ali, Reliable, fast, and deterministic substation communication network architecture and its performance simulation,, IEEE Trans. Power Deliv., vol. 25, no. 4, p.2364–2370, (2010).

DOI: 10.1109/tpwrd.2010.2042824

Google Scholar

[12] S. Gupta, Reliability Analysis of IEC 61850 Substation Communication Network Architectures,, vol. 3, no. 2, p.93–98, (2016).

Google Scholar

[13] K. Kaneda, S. Tamura, N. Fujiyama, Y. Arata, and H. Ito, IEC61850 based substation automation system,, 2008 Jt. Int. Conf. Power Syst. Technol. POWERCON IEEE Power India Conf. POWERCON 2008, (2008).

DOI: 10.1109/icpst.2008.4745296

Google Scholar

[14] V. C. Mathebula and A. K. Saha, Coal Fired Power Plant In-Phase Bus Transfer Simulation of Forced and Induced Draught Fan Motors,, in Proceedings - 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa, SAUPEC/RobMech/PRASA 2019, 2019, p.293–298.

DOI: 10.1109/robomech.2019.8704820

Google Scholar

[15] F. Tilaro, B. Copy, and M. Gonzalez-Berges, IEC-61850 Industrial Communication Standards Under Test,, Proc. ICALEPCS2013, San Fr. CA, USA, (2014).

Google Scholar

[16] J. C. Tan and W. Luan, IEC 61850 based substation automation system architecture design,, in IEEE Power and Energy Society General Meeting, 2011, p.1–6.

DOI: 10.1109/pes.2011.6039814

Google Scholar

[17] S. Roostaee, S. Mehfuz, and M. S. Thomas, Reliability Comparison of Various Power Substation Automation based on,, vol. 3, p.15–26, (2017).

Google Scholar

[18] N. Das and S. Islam, Analysis of power system communication architectures between substations using IEC 61850,, p.1.06 (6 .)-1.06 (6 .), (2015).

DOI: 10.1049/cp.2014.1060

Google Scholar

[19] R. Mackiewicz, Overview of IEC 61850,, in Proceedings of Power Systems Computations Conference, 2006, vol. 57, no. 57, p.1–40.

Google Scholar

[20] B. E. M. Camachi, O. Chenaru, L. Ichim, and D. Popescu, A practical approach to IEC 61850 standard for automation, protection and control of substations,, Proc. 9th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2017, vol. 2017-Janua, p.1–6, (2017).

DOI: 10.1109/ecai.2017.8166471

Google Scholar

[21] I. Ali and M. S. Thomas, Substation communication networks architecture,, in 2008 Joint International Conference on Power System Technology POWERCON and IEEE Power India Conference, POWERCON 2008, (2008).

DOI: 10.1109/icpst.2008.4745218

Google Scholar

[22] S. M. Suhail Hussain, M. A. Aftab, and I. Ali, A novel PRP based deterministic, redundant and resilient IEC 61850 substation communication architecture,, Perspect. Sci., vol. 8, p.747–750, (2016).

DOI: 10.1016/j.pisc.2016.06.077

Google Scholar

[23] A. Khavnekar, S. Wagh, and A. More, Comparative Analysis of IEC 61850 Edition-I and II Standards for Substation Automation,, 2015 IEEE Int. Conf. Comput. Intell. Comput. Res., no. Iccic, p.1–6, (2015).

DOI: 10.1109/iccic.2015.7435756

Google Scholar

[24] A. Ingalalli, K. S. Silpa, and R. Gore, SCD based IEC 61850 traffic estimation for substation automation networks,, IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, p.1–8, (2018).

DOI: 10.1109/etfa.2017.8247596

Google Scholar

[25] K. P. Brand, M. Ostertag, and W. Wimmer, Safety related, distributed functions in substations and the standard IEC 61850,, 2003 IEEE Bol. PowerTech - Conf. Proc., vol. 2, no. July, p.260–264, (2003).

DOI: 10.1109/ptc.2003.1304319

Google Scholar

[26] N. Liu, M. Panteli, and P. A. Crossley, Reliability evaluation of a substation automation system communication network based on IEC 61850,, 2014, no. April, p.1–6.

DOI: 10.1049/cp.2014.0057

Google Scholar

[27] S. Gupta, Performance analysis of substation communication network architectures in OPNET,, Int. J. Res. Adv. Eng. Technol., vol. 3, no. 2, (2017).

Google Scholar

[28] IEEE PSRC Technical Report., Application Considerations of IEC 61850 / UCA 2 for Substation Ethernet Local Area Network Communication for Protection and Control,, (2005).

Google Scholar

[29] IEEE Power System Relaying Committee WG K15 Report, Centralized Substation Protection and Control,, (2015).

Google Scholar

[30] M. G. Kanabar and T. S. Sidhu, Reliability and availability analysis of IEC 61850 based substation communication architectures," 2009 IEEE Power Energy Soc. Gen. Meet. PES ,09, p.1–8, (2009).

DOI: 10.1109/pes.2009.5276001

Google Scholar

[31] P. Zhang, L. Portillo, and M. Kezunovic, Reliability and Component Importance Analysis of All-Digital Protection Systems,, in 2006 IEEE PES Power Systems Conference and Exposition, 2006, p.1380–1387.

DOI: 10.1109/psce.2006.296504

Google Scholar

[32] I. Ali, M. S. Thomas, S. Gupta, and S. M. S. Hussain, IEC 61850 Substation Communication Network Architecture for Efficient Energy System Automation,, Energy Technol. Policy, p.82–91, (2015).

DOI: 10.1080/23317000.2015.1043475

Google Scholar

[33] W. R. Wessels, Use of the Weibull versus exponential to model part reliability,, 2007 Proc. - Annu. Reliab. Maintainab. Symp. RAMS, no. 2, p.131–135, (2007).

Google Scholar

[34] J. F. Kitchin, Practical Markov modeling for reliability analysis., p.290–296, (2003).

Google Scholar

[35] G. Gupta, R. P. Mishra, and P. Jain, Reliability analysis and identification of critical components using Markov model,, IEEE Int. Conf. Ind. Eng. Eng. Manag., vol. 2016-Janua, p.777–781, (2016).

Google Scholar

[36] T. C. Sharma and I. Bazovsky, Reliability analysis of large system by Markov techniques,, p.260–267, (1993).

Google Scholar

[37] J. R. Müller, T. Ständer, and E. Schnieder, Improving system safety modelling in accordance to IEC 61508 by using Monte Carlo simulations,, IFAC Proc. Vol., vol. 2, no. PART 1, p.193–197, (2009).

DOI: 10.3182/20090610-3-it-4004.00038

Google Scholar

[38] T. Winkovich and D. Eckardt, Reliability analysis of safety systems using Markov-chain modelling,, p.10 pp.-P.10, (2008).

Google Scholar

[39] J. V. Bukowski and I. Van Beurden, Impact of proof test effectiveness on safety instrumented system performance,, in Proceedings - Annual Reliability and Maintainability Symposium, 2009, p.157–163.

DOI: 10.1109/rams.2009.4914668

Google Scholar

[40] F. Redmill, An introduction to the safety standard IEC 61508,, Hazard Prev., vol. 35, no. 1, p.20–25, (1999).

Google Scholar

[41] S. Sekiou, Z. Chiremsel, S. Drid, and R. Nait Said, Failures diagnostic of safety instrumented system: Simulation and experimental study,, in 2013 International Conference on Control, Decision and Information Technologies, CoDIT 2013, 2013, p.776–781.

DOI: 10.1109/codit.2013.6689641

Google Scholar

[42] O. Gorgies and L. Reindl, Fail-safe protection Circuit for industrial safety applications,, in 2015 25th International Conference on Information, Communication and Automation Technologies, ICAT 2015 - Proceedings, 2015, p.1–5.

DOI: 10.1109/icat.2015.7340521

Google Scholar

[43] M. Caserza Magro, P. Pinceti, L. Rocca, and G. Rossi, Safety related functions with IEC 61850 GOOSE messaging,, Int. J. Electr. Power Energy Syst., vol. 104, no. November 2017, p.515–523, (2019).

DOI: 10.1016/j.ijepes.2018.07.033

Google Scholar

[44] G. Antonova, L. Frisk, and J. C. Tournier, Communication redundancy for substation automation,, 2011 64th Annu. Conf. Prot. Relay Eng., p.344–355, (2011).

DOI: 10.1109/cpre.2011.6035636

Google Scholar

[45] M. Kumar, A. Kabra, G. Karmakar, and P. P. Marathe, A review of defences against common cause failures in reactor protection systems,, in 2015 4th International Conference on Reliability, Infocom Technologies and Optimization: Trends and Future Directions, ICRITO 2015, 2015, p.1–6.

DOI: 10.1109/icrito.2015.7359232

Google Scholar