[1]
E. Fournie, J.M. Lasry, J. Lebuchoux, P.L. Lions, N. Touzi, Applications of Malliavin calculus to Monte Carlo methods in finance, Finance and Stochastics 3 (1999) 391 − 412.
DOI: 10.1007/s007800050068
Google Scholar
[2]
E. Fournie, J.M. Lasry, J. Lebuchoux, P.L. Lions, N. Touzi, Applications of Malliavin calculus to Monte Carlo methods in finance II, Finance and Stochastics 5 (2001) 201 − 236.
DOI: 10.1007/pl00013529
Google Scholar
[3]
F.E. Benth, G. Di Nunno, A. Lkka, B. Øksendal, F. Proske, Explicit representation of minimal variance portfolio in markets driven by Lévy processes, Mathematical Finance 13(1) (2003) 55-72.
DOI: 10.1111/1467-9965.t01-1-00005
Google Scholar
[4]
J.C. Hull, Options, Futures, and Other Derivative Securities, Seventh ed., Prentice-Hall, Engle-wood Cliffs, New Jersey, (2008).
Google Scholar
[5]
E. Benhamou, A generalisation of Malliavin weighted scheme for fast computation of the Greeks, Ssrn Electronic Journal, (2001). https://doi.org/10.2139/ssrn.265277.
DOI: 10.2139/ssrn.265277
Google Scholar
[6]
E. Benhamou, Optimal Malliavin weighting function for the computation of the Greeks, Mathematical Finance 13(1) (2003) 37 − 53.
DOI: 10.1111/1467-9965.t01-1-00004
Google Scholar
[7]
D. Nualart, Malliavin Calculus and Related Topics, Second ed., Springer-Verlag, (2006).
Google Scholar
[8]
M.H.A. Davis, M.P. Johansson, Malliavin Monte Carlo Greeks for jump diffusions, Stochastic Process and their Applications 116 (2006) 101 − 129.
DOI: 10.1016/j.spa.2005.08.002
Google Scholar
[9]
A. Khedher, Computation of the delta in multidimensional jump-diffusion setting with applications to stochastic volatility models, Stochastic Analysis and Applications 30(3) (2012) 403 − 425.
DOI: 10.1080/07362994.2012.668440
Google Scholar
[10]
F. Huehne, Malliavin calculus for the computation of Greeks in markets driven by purejump Lévy processes, Ssrn Electronic Journal (2005). https://doi.org/10.2139/ssrn.948347.
DOI: 10.2139/ssrn.948347
Google Scholar
[11]
F.J. Mhlanga, Calculations of Greeks for jump diffusion processes, Mediterranean Journal of Mathematics 12(3) (2015) 1141-1160.[12] E. Petrou, Malliavin calculus in Ĺevy spaces and applications in finance, Electronic Journal of Probability 3 (2008) 852 − 879.
DOI: 10.1007/s00009-014-0459-1
Google Scholar
[13]
F.J. Mhlanga, R. Becker, Applications of white noise calculus to the computation of Greeks, Communications on Stochastic Analysis 7(4) (2013) 493 − 510.
DOI: 10.31390/cosa.7.4.01
Google Scholar
[14]
E. Alós, J.A. León, J. Vives, An aticipating Itoˆ formula for Lévy processes, ALEA 4 (2008) 285-305.
Google Scholar
[15]
G. Di Nunno, B. Øksendal, F. Proske, Malliavin calculus for Lévy processes with application to finance, Springer-Verlag, (2009).
DOI: 10.1007/978-3-540-78572-9
Google Scholar
[16]
C. Geiss, E. Laukkarinen, Denseness of certain smooth Lévy functionals in D1, 2, Probability and Mathematical Statistics 31(1) (2011) 1 − 15.
Google Scholar
[17]
J. Solé, F. Utzet, J. Vives, Canonical Lévy processes and Malliavin calculus, Stochastic Process. Appl. 117 (2007) 165 − 187.
DOI: 10.1016/j.spa.2006.06.006
Google Scholar
[18]
A. Steinicke, Functionals of a Lévy process on canonical and generic probability spaces, Journal of Theoretical Probability 29(2) (2016) 443 − 458.
DOI: 10.1007/s10959-014-0583-7
Google Scholar
[19]
D. Applebaum, Lévy processes and stochastic calculus, Cambridge Studies in Advanced Math-ematics, 93, Cambridge University Press, Cambridge, (2004).
Google Scholar
[20]
K. Sato, Lévy processes and infinitely divisible distributions, Cambridge University Studies in Advanced Mathematics, 68, Cambridge University Press, Cambridge, (1999).
Google Scholar
[21]
K. Itˆo, Spectral type of the shift transformation of differential process with stationary increments, Trans. Amer. Math. Soc. 81 (1956) 253 − 263.
DOI: 10.1090/s0002-9947-1956-0077017-0
Google Scholar
[22]
J. Neveu, Processus pontuels, in: ´Ecole d'Ete´ de Probabilités de Saint Flour, VI, in: Lecture Notes in Mathematics, 598, Springer, Berlin, (1977).
DOI: 10.1007/bfb0097494
Google Scholar
[23]
J. Picard, On the existence of smooth densities for jump processes, Probab. Theory Related Fields 105 (1996) 481 − 511.
DOI: 10.1007/bf01191910
Google Scholar