Malliavin Calculus and the Optimal Weighting Function in a Pure Jump Lévy Setting

Article Preview

Abstract:

The paper is devoted to the problem of obtaining weighting functions for the Greeks of an option price written on a stock whose dynamics are of pure jump type. The problem is motivated by the work of Fourni\'e et al. [8, 9], who considered the price sensitivities of a frictionless market and proved that Greeks can be computed as the expectation of the product of the discounted payoff $\Phi$ and a suitable weighted function, i.e.Greek = E[Φ(XT)weight]. Since the weighting functions are random variables that need to be explicitly computed on each specific case, we establish necessary and sufficient conditions to be satisfied. The method used relied on the Malliavin calculus for Levy processes.

You might also be interested in these eBooks

Info:

Pages:

66-81

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Fournie, J.M. Lasry, J. Lebuchoux, P.L. Lions, N. Touzi, Applications of Malliavin calculus to Monte Carlo methods in finance, Finance and Stochastics 3 (1999) 391 − 412.

DOI: 10.1007/s007800050068

Google Scholar

[2] E. Fournie, J.M. Lasry, J. Lebuchoux, P.L. Lions, N. Touzi, Applications of Malliavin calculus to Monte Carlo methods in finance II, Finance and Stochastics 5 (2001) 201 − 236.

DOI: 10.1007/pl00013529

Google Scholar

[3] F.E. Benth, G. Di Nunno, A. Lkka, B. Øksendal, F. Proske, Explicit representation of minimal variance portfolio in markets driven by Lévy processes, Mathematical Finance 13(1) (2003) 55-72.

DOI: 10.1111/1467-9965.t01-1-00005

Google Scholar

[4] J.C. Hull, Options, Futures, and Other Derivative Securities, Seventh ed., Prentice-Hall, Engle-wood Cliffs, New Jersey, (2008).

Google Scholar

[5] E. Benhamou, A generalisation of Malliavin weighted scheme for fast computation of the Greeks, Ssrn Electronic Journal, (2001). https://doi.org/10.2139/ssrn.265277.

DOI: 10.2139/ssrn.265277

Google Scholar

[6] E. Benhamou, Optimal Malliavin weighting function for the computation of the Greeks, Mathematical Finance 13(1) (2003) 37 − 53.

DOI: 10.1111/1467-9965.t01-1-00004

Google Scholar

[7] D. Nualart, Malliavin Calculus and Related Topics, Second ed., Springer-Verlag, (2006).

Google Scholar

[8] M.H.A. Davis, M.P. Johansson, Malliavin Monte Carlo Greeks for jump diffusions, Stochastic Process and their Applications 116 (2006) 101 − 129.

DOI: 10.1016/j.spa.2005.08.002

Google Scholar

[9] A. Khedher, Computation of the delta in multidimensional jump-diffusion setting with applications to stochastic volatility models, Stochastic Analysis and Applications 30(3) (2012) 403 − 425.

DOI: 10.1080/07362994.2012.668440

Google Scholar

[10] F. Huehne, Malliavin calculus for the computation of Greeks in markets driven by purejump Lévy processes, Ssrn Electronic Journal (2005). https://doi.org/10.2139/ssrn.948347.

DOI: 10.2139/ssrn.948347

Google Scholar

[11] F.J. Mhlanga, Calculations of Greeks for jump diffusion processes, Mediterranean Journal of Mathematics 12(3) (2015) 1141-1160.[12] E. Petrou, Malliavin calculus in Ĺevy spaces and applications in finance, Electronic Journal of Probability 3 (2008) 852 − 879.

DOI: 10.1007/s00009-014-0459-1

Google Scholar

[13] F.J. Mhlanga, R. Becker, Applications of white noise calculus to the computation of Greeks, Communications on Stochastic Analysis 7(4) (2013) 493 − 510.

DOI: 10.31390/cosa.7.4.01

Google Scholar

[14] E. Alós, J.A. León, J. Vives, An aticipating Itoˆ formula for Lévy processes, ALEA 4 (2008) 285-305.

Google Scholar

[15] G. Di Nunno, B. Øksendal, F. Proske, Malliavin calculus for Lévy processes with application to finance, Springer-Verlag, (2009).

DOI: 10.1007/978-3-540-78572-9

Google Scholar

[16] C. Geiss, E. Laukkarinen, Denseness of certain smooth Lévy functionals in D1, 2, Probability and Mathematical Statistics 31(1) (2011) 1 − 15.

Google Scholar

[17] J. Solé, F. Utzet, J. Vives, Canonical Lévy processes and Malliavin calculus, Stochastic Process. Appl. 117 (2007) 165 − 187.

DOI: 10.1016/j.spa.2006.06.006

Google Scholar

[18] A. Steinicke, Functionals of a Lévy process on canonical and generic probability spaces, Journal of Theoretical Probability 29(2) (2016) 443 − 458.

DOI: 10.1007/s10959-014-0583-7

Google Scholar

[19] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Studies in Advanced Math-ematics, 93, Cambridge University Press, Cambridge, (2004).

Google Scholar

[20] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge University Studies in Advanced Mathematics, 68, Cambridge University Press, Cambridge, (1999).

Google Scholar

[21] K. Itˆo, Spectral type of the shift transformation of differential process with stationary increments, Trans. Amer. Math. Soc. 81 (1956) 253 − 263.

DOI: 10.1090/s0002-9947-1956-0077017-0

Google Scholar

[22] J. Neveu, Processus pontuels, in: ´Ecole d'Ete´ de Probabilités de Saint Flour, VI, in: Lecture Notes in Mathematics, 598, Springer, Berlin, (1977).

DOI: 10.1007/bfb0097494

Google Scholar

[23] J. Picard, On the existence of smooth densities for jump processes, Probab. Theory Related Fields 105 (1996) 481 − 511.

DOI: 10.1007/bf01191910

Google Scholar