[1]
Environmental Protection Agency, Guidelines for water reuse technical issues in planning water reuse systems, Washington (DC), (2004).
Google Scholar
[2]
Ortiz O., Pasqualino J.C. and Castells F. Environmental performance of construction waste: Comparing three scenarios from a case study in Catalonia, Spain, Waste Manag. 30 (2010) 646–654.
DOI: 10.1016/j.wasman.2009.11.013
Google Scholar
[3]
European Commission, New bamboo engineered biomaterial sustainable building components, (2016). http://europa.eu/geninfo/query/resultaction.jsp?QueryText=bamboo& swlang=en&x=0&y=0 (accessed May 23, 2017).
Google Scholar
[4]
Teck Kim Y., Min B. and Won Kim K., Chapter 2 - General Characteristics of Packaging Materials for Food System, in: J.H.B.T.-I. in F.P. (Second E. Han (Ed.), Food Sci. Technol., Academic Press, San Diego, 2014: p.13–35. doi:https://doi.org/10.1016/B978-0-12-394601-0.00002-3.
DOI: 10.1016/b978-0-12-394601-0.00002-3
Google Scholar
[5]
Noor T., Javid A., Hussain A., Bukhari S.M., Ali W., Akmal M. and Hussain S.M., Chapter 14 - Types, sources and management of urban wastes, in: P. Verma, P. Singh, R. Singh, A.S.B.T.-U.E. Raghubanshi (Eds.), Elsevier, 2020: p.239–263. doi:https://doi.org/10.1016/B978-0-12-820730-7.00014-8.
DOI: 10.1016/b978-0-12-820730-7.00014-8
Google Scholar
[6]
Waste Advantage Magazine, The advantage in the waste and recycling industry, EPA's Off. Solid Waste Emerg. Response. (2014).
Google Scholar
[7]
Foster W., Azimov U., Gauthier-Maradei P., Molano L.C., Combrinck M., Munoz J., Esteves J.J. and Patino L., Waste-to-energy conversion technologies in the UK: Processes and barriers – A review, Renew. Sustain. Energy Rev. 135 (2021) 110226. doi:https://doi.org/10.1016/j.rser.2020.110226.
DOI: 10.1016/j.rser.2020.110226
Google Scholar
[8]
Obohwemu K., Twisted, Book One Frozen, First Edition Design Publishing, Sarasota, USA, (2014).
Google Scholar
[9]
Nigerian press council, Inventory of Newspaper and Magazine published in Nigeria, (2015).
Google Scholar
[10]
Mandili B., Taqi M., El Bouari A. and Errouaiti M., Experimental study of a new ecological building material for a thermal insulation based on waste paper and lime, Constr. Build. Mater. 228 (2019) 117097. doi:https://doi.org/10.1016/j.conbuildmat.2019.117097.
DOI: 10.1016/j.conbuildmat.2019.117097
Google Scholar
[11]
Mymrin V., Pedroso C.L., Pedroso D.E., Avanci M.A., Meyer S.A.S., Rolim P.H.B., Argenta M.A., Ponte M.J.J. and Gonçalves A.J., Efficient application of cellulose pulp and paper production wastes to produce sustainable construction materials, Constr. Build. Mater. 263 (2020) 120604. doi:https://doi.org/10.1016/j.conbuildmat.2020.120604.
DOI: 10.1016/j.conbuildmat.2020.120604
Google Scholar
[12]
Sutcu M., del Coz Díaz J.J., Álvarez Rabanal F.P., Gencel O. and Akkurt S., Thermal performance optimization of hollow clay bricks made up of paper waste, Energy Build. 75 (2014) 96–108. doi:https://doi.org/10.1016/j.enbuild.2014.02.006.
DOI: 10.1016/j.enbuild.2014.02.006
Google Scholar
[13]
Das S., Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites, Carbohydr. Polym. 172 (2017) 60–67. doi:https://doi.org/10.1016/j.carbpol.2017.05.036.
DOI: 10.1016/j.carbpol.2017.05.036
Google Scholar
[14]
Rajput D., Bhagade S.S., Raut S.P., Ralegaonkar R.V. and Mandavgane S.A., Reuse of cotton and recycle paper mill waste as building material, Constr. Build. Mater. 34 (2012) 470–475. doi:https://doi.org/10.1016/j.conbuildmat.2012.02.035.
DOI: 10.1016/j.conbuildmat.2012.02.035
Google Scholar
[15]
Zhang Q., Khan M.U., Lin X., Yi W. and Lei H., Green-composites produced from waste residue in pulp and paper industry: A sustainable way to manage industrial wastes, J. Clean. Prod. 262 (2020) 121251. doi:https://doi.org/10.1016/j.jclepro.2020.121251.
DOI: 10.1016/j.jclepro.2020.121251
Google Scholar
[16]
Pillay D.L., Olalusi O.B. and Mostafa M.M.H., A Review of the Engineering Properties of Concrete with Paper Mill Waste Ash — Towards Sustainable Rigid Pavement Construction, Silicon. (2020).
DOI: 10.1007/s12633-020-00664-2
Google Scholar
[17]
Hospodarova V., Stevulova N., Briancin J. and Kostelanska K., Investigation of waste paper cellulosic fibers utilization into cement based building materials. Buildings, 8 (2018).
DOI: 10.3390/buildings8030043
Google Scholar
[18]
Giljum S., Hinterberger F., Bruckner M., Burger E., Frühmann J., Lutter S., Pirgmaier E., Polzin C., Waxwender H. and Kernegger L., Overconsumption? Our use of the world's natural resources, (2009).
Google Scholar
[19]
Mahmoud A.S., Asif M., Hassanain M.A., Babsail M.O. and Sanni-Anibire M. O., Energy and economic evaluation of green roofs for residential buildings in hot-humid climates, Buildings. 7 (2017).
DOI: 10.3390/buildings7020030
Google Scholar
[20]
Humphreys D., In search of a new China: mineral demand in South and Southeast Asia, Miner. Econ. 31 (2018) 103–112.
DOI: 10.1007/s13563-017-0118-7
Google Scholar
[21]
Waste & Resources Action Programme, Waste Recovery Quick Wins: Improving recovery rates without increasing costs, (2007).
Google Scholar
[22]
Ali A., Hashmi H.N. and Baig N., Treatment of the paper mill effluent – A review. Annals of Faculty Engineering Hunedoara, Int. J. Eng. 11 (2013) 337–340.
Google Scholar
[23]
Kinsella S., Gleason G., Mills V., Rycroft N., Ford J., Sheehan K. and Martin J., The state of the paper industry: Monitoring the indicators of environmental performance. Environmental Paper Network, Environ. Pap. Netw. (2007).
Google Scholar
[24]
Ogwueleka T., Municipal solid waste characteristics and management in Nigeria., J. Environ. Heal. Sci. Eng. 6 (2009) 173–180.
Google Scholar
[25]
Hoornweg D. and Bhada-Tata P., What a waste: a global review of solid waste management, (2012). https://doi.org/10.18356/765baec0-en.
Google Scholar
[26]
Waste&Resources Action Programme(WRAP). Environmental Benefit of recycling, 2010 (2010) http://www.wrap.org.uk/sites/files/wrap/Environmental_benefits_of_recycling_2010_update.3b174d59.8816.pdf (accessed December 25, 2019).
DOI: 10.1093/ww/9780199540884.013.u251283
Google Scholar
[27]
Global Construction Perspectives and Oxford Economics (GCPOE) forecasts, (2013). Global Construction 2025. A global forecast for the construction industry to 2025. Global Construction Perspectives and Oxford Economics.
Google Scholar
[28]
Global Construction Perspectives and Oxford Economics (GCPOE) forecasts, (2015). Global construction 2030: a global forecast for the construction industry to 2030. ISBN 978-0-9564207-9-4.
Google Scholar
[29]
Stanford University's Recycling and Solid waste report, Frequently Asked Questions: Benefits of Recycling, (n.d.). http://bgm.stanford.edu/pssi_environmental_benefits (accessed December 15, 2019).
Google Scholar
[30]
Karade S.R., Cement-bonded composites from lignocellulosic wastes, Constr. Build. Mater. 24 (2010) 1323–1330. doi:https://doi.org/10.1016/j.conbuildmat.2010.02.003.
DOI: 10.1016/j.conbuildmat.2010.02.003
Google Scholar
[31]
Arya S. and Kumar S., E-waste in India at a glance: Current trends, regulations, challenges and management strategies, J. Clean. Prod. 271 (2020) 122707. doi:https://doi.org/10.1016/j.jclepro.2020.122707.
DOI: 10.1016/j.jclepro.2020.122707
Google Scholar
[32]
Griffin P.W. and Hammond G.P., Analysis of the potential for energy demand and carbon emissions reduction in the iron and steel sector, Energy Procedia. 158 (2019) 3915–3922. doi:https://doi.org/10.1016/j.egypro.2019.01.852.
DOI: 10.1016/j.egypro.2019.01.852
Google Scholar
[33]
Luhar S., Cheng T.-W. and Luhar I., Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review, Compos. Part B Eng. 175 (2019) 107076. doi:https://doi.org/10.1016/j.compositesb.2019.107076.
DOI: 10.1016/j.compositesb.2019.107076
Google Scholar
[34]
Pérez-Lombard L., Ortiz J. and Pout C., A review on buildings energy consumption information, Energy Build. 40 (2008) 394–398. doi:https://doi.org/10.1016/j.enbuild.2007.03.007.
DOI: 10.1016/j.enbuild.2007.03.007
Google Scholar
[35]
BS EN 1015-11, Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar, (2019).
DOI: 10.3403/01905442u
Google Scholar
[36]
Evangelista L. and de Brito J., Durability performance of concrete made with fine recycled concrete aggregates, Cem. Concr. Compos. 32 (2010) 9–14.
DOI: 10.1016/j.cemconcomp.2009.09.005
Google Scholar
[37]
Nilsson L.O., Poulson E., Sandberg P., Sorensen H.E. and Klinghoffer O., HETEK, Chloride penetration into concrete, State-of-the-art, transport processes, corrosion initiation, test methods and prediction models, (1996).
Google Scholar
[38]
BS EN 998-1:2016: Specification for mortar for masonry - Part 1: Rendering and plastering mortar, (2016). British Standards Institute.
DOI: 10.3403/02918815
Google Scholar
[39]
BS EN 998-2:2016: Specification for mortar for masonry - Part 2: Masonry mortar, (2016). British Standards Institute.
Google Scholar
[40]
Okeyinka O. M., Oloke D.A and Khatib J.M., Strength and stiffness properties of the optimum mix composition of cement-less wastepaper-based lightweight block (CWLB), WSEAS Trans. Environ. Dev. 13 (2017) 335–345.
Google Scholar
[41]
EPA, Summary of Expert Discussion Forum on Possible Human Health Risks from Microplastics in the Marine Environment, EPA Reports. (2015). https://www.epa.gov/trash-free-waters/epa-reports (accessed September 27, 2019).
Google Scholar
[42]
Burnley S., Ellis J., Flowerdew R., Poll A. and Prosser H., Assessing the composition of municipal solid waste in Wales. Resources, Conservation and Recycling, 49(3), (2007) 264-283.
DOI: 10.1016/j.resconrec.2006.03.015
Google Scholar
[43]
Eurostat Statistics Explained (2016). Packaging Waste statistics. Statistical Office of the European Communities. ISSN 2443-8219.
Google Scholar
[44]
Saleh A.A.S.E.-H.E.-D.M., Municipal Solid Waste Management and the Inland Water Bodies: Nigerian Perspectives, in: IntechOpen, Rijeka, 2019: p. Ch. 5.
DOI: 10.5772/intechopen.84921
Google Scholar
[45]
Food and Agriculture Organization of the United Nations (FAO). Yearbook of Forest Products 2010-2014 (2016). http://www.fao.org/3/a-i5542m.pdf, p.186 (accessed December 28, 2019).
Google Scholar
[46]
Kinsella S., Baffoni S., Anderson P., Ford J., Leithe R., Smith D. and Neyroumande E., The State of the Global Paper Industry, (2018) 1–90.
Google Scholar
[47]
Confederation of European Paper Industries (CEPI). Landfill and incineration restriction for recyclable paper (2014). http://www.cepi.org/position-paper/landfill-and-incineration-restriction-recyclable-paper (accessed December 28, 2019).
Google Scholar
[48]
Ayeleru O.O., Dlova S., Akinribide O.J., Ntuli F., Kupolati W.K., Marina P.F., Blencowe A. and Olubambi P.A., Challenges of plastic waste generation and management in sub-Saharan Africa: A review, Waste Manag. 110 (2020) 24–42. doi:https://doi.org/10.1016/ j.wasman.2020.04.017.
DOI: 10.1016/j.wasman.2020.04.017
Google Scholar
[49]
Tyagi V.K. and Lo S.-L., Sludge: A waste or renewable source for energy and resources recovery?, Renew. Sustain. Energy Rev. 25 (2013) 708–728. doi:https://doi.org/10.1016/j.rser.2013.05.029.
DOI: 10.1016/j.rser.2013.05.029
Google Scholar
[50]
JW L. and Barlaz M., Is biodegradability a desirable attribute for discarded solid waste? Perspectives from a national landfill greenhouse gas inventory model, Env. Sci Technol. 45 (2011).
DOI: 10.1021/es200721s
Google Scholar
[51]
Duan Z., Scheutz C. and Kjeldsen P., Trace gas emissions from municipal solid waste landfills: A review, Waste Manag. 119 (2021) 39–62. doi:https://doi.org/10.1016/j.wasman. 2020.09.015.
DOI: 10.1016/j.wasman.2020.09.015
Google Scholar
[52]
European Environment Agency, Diverting waste from landfill, (2009).
Google Scholar
[53]
Zavala J., Building Method to Produce Lightweight Building Blocks from Cellulose Fibre., (2015).
Google Scholar
[54]
Nidzam R.M. and Kinuthia J.M., Sustainable soil stabilisation with blastfurnace slag – a review, Proc. Inst. Civ. Eng. - Constr. Mater. 163 (2010) 157–165.
DOI: 10.1680/coma.2010.163.3.157
Google Scholar
[55]
Adesanya E., Ohenoja K., Luukkonen T., Kinnunen P. and Illikainen M., One-part geopolymer cement from slag and pretreated paper sludge, J. Clean. Prod. 185 (2018) 168–175. doi:https://doi.org/10.1016/j.jclepro.2018.03.007.
DOI: 10.1016/j.jclepro.2018.03.007
Google Scholar
[56]
Nepal B. and Aggarwal V., Papercrete: A study on green structural material, Int. J. Appl. Eng. Res. 9 (2014).
Google Scholar
[57]
Kokinos, Precast Papercrete Panels, Technical University of Delft, (2011).
Google Scholar
[58]
Zaki H., Gorgis I. and Salih S., Mechanical properties of papercrete, MATEC Web Conf. 162 (2018).
DOI: 10.1051/matecconf/201816202016
Google Scholar
[59]
Titzman L., Analysis of low-cost building material for the MixAlco process, exas A & M University, (2006).
Google Scholar
[60]
Mohammed M.K., Dawson A.R. and Thom N.H., Production, microstructure and hydration of sustainable self-compacting concrete with different types of filler, Constr. Build. Mater. 49 (2013) 84–92.
DOI: 10.1016/j.conbuildmat.2013.07.107
Google Scholar
[61]
Decard J.D., West R.P. and Prichard S.J., THE IMPACT RESPONSE OF RECYCLED PAPER WASTE CONCRETE, in: Recover. Recycl. Pap., n.d.: p.81–92.
Google Scholar
[62]
Ghani A.N.A. and Mohammad Shukeri R., Concrete Mix with Wastepaper, 2nd Int. Conf. Built Environ. Dev. Ctries. (ICBEDC), Penang, Malaysia, Univ. Sains Malaysia. (2008) 567–575. http://eprints.usm.my/34459/1/HBP15.pdf.
Google Scholar
[63]
Aciu C., Varvara D.A.I.–, Cobirzan N. and Balog A., Recycling of Paper Waste in the Composition of Plastering Mortars, Procedia Technol. 12 (2014) 295–300. doi:https://doi.org/10.1016/j.protcy.2013.12.489.
DOI: 10.1016/j.protcy.2013.12.489
Google Scholar
[64]
Kinuthia J., Snelson D. and Gailius A., Sustainable medium‐strength concrete (CS‐concrete) from colliery spoil in South Wales UK. Journal of Civil Engineering and Management, 15(2) (2009) 149-157.
DOI: 10.3846/1392-3730.2009.15.149-157
Google Scholar
[65]
Fuller B., Living in Paper - 2020: Mixes. (2015) http://www.livinginpaper.com/mixes.htm. (accessed November 8, 2019).
Google Scholar
[66]
Modry S., Use of Waste Paper as a Constituent of Concrete. In Ravindra Dhir K., Mukesh C. Limbachiya (Ed.), Recovery and recycling of paper international symposium, Thomas Telford Publishing, United Kingdom. (2001) 77-80.
DOI: 10.1680/rarop.29934
Google Scholar
[67]
Chandarana S., Charthal J. and Chandarana Y., Experimental study and evaluation of optimum mix proportion of Papercrete blocks,. International Journal of Modern Trends in Engineering and Research. 2(2), (2014) 157-161.
Google Scholar
[68]
Akinwumi I.I., Olatunbosun O.M., Olofinnade O.M. and Awoyera P.O., Structural Evaluation of Lightweight Concrete Produced Using Waste Newspaper and Office Paper. Civil and Environmental Research, 6(7), (2014) 160-167.
Google Scholar
[69]
Awoyera P. O., Dawson A. R., Thom N. H. and Akinmusuru J. O., Suitability of mortars produced using laterite and ceramic wastes: Mechanical and microscale analysis, Construction and Building Materials, 148 (2017) 195-203,.
DOI: 10.1016/j.conbuildmat.2017.05.031
Google Scholar
[70]
Juan A., Medina C., Guerra M., Morán J., Aguado P., Sánchez de Rojas M., Frías M. and Rodríguez O., Re-Use of Ceramic Wastes in Construction, in: W. Wunderlich (Ed.), Ceram. Mater., InTech, (2010).
Google Scholar
[71]
European Commission. Efficient use of mixed wastes – improving management of construction and demolition waste – final report (2017). https://publications.europa.eu/en/publication-detail/-/publication/78e42e6c-d8a6-11e7-a506-01aa75ed71a1/language-en (accessed March 11, 2020).
Google Scholar
[72]
de Brito J., Pereira A.S. and, Correia J.R., Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates, Cem. Concr. Compos. 27 (2005) 429–433.
DOI: 10.1016/j.cemconcomp.2004.07.005
Google Scholar
[73]
Senthamarai R., Manoharan P.D. and Gobinath D., Concrete made from ceramic industry waste: Durability properties, Constr. Build. Mater. 25 (2011) 2413–2419.
DOI: 10.1016/j.conbuildmat.2010.11.049
Google Scholar
[74]
Koyuncu H., Guney Y., Yilmaz G., Koyuncu S. and Bakis R., Utilization of ceramic Wastes in the Construction Sector, Euro Ceram. Viii, Part 1-3. 264–268 (2004) 2509–2512.
DOI: 10.4028/www.scientific.net/kem.264-268.2509
Google Scholar
[75]
Binici H., Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties, Constr. Build. Mater. 21 (2007) 1191–1197.
DOI: 10.1016/j.conbuildmat.2006.06.002
Google Scholar
[76]
Puertas F., Barba A., Gazulla M., Gómez M., Palacios M. and Martínez-Ramírez S., Ceramic wastes as raw materials in portland cement clinker fabrication: characterization and alkaline activation, Mater. Construcción. 56 (2006).
DOI: 10.3989/mc.2006.v56.i281.94
Google Scholar
[77]
Silva J., de Brito J. and Veiga R., Recycled Red-Clay Ceramic Construction and Demolition Waste for Mortars Production, J. Mater. Civ. Eng. 22 (2010) 236–244.
DOI: 10.1061/(asce)0899-1561(2010)22:3(236)
Google Scholar
[78]
Medina C, Sánchez de Rojas M. and Frías M. Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cem Concr Compos, 34 (2012) 48–54.
DOI: 10.1016/j.cemconcomp.2011.08.015
Google Scholar
[79]
López V., Llamas B., Juan A., Morán J.M. and Guerra I., Eco-efficient Concretes: Impact of the Use of White Ceramic Powder on the Mechanical Properties of Concrete, Biosyst. Eng. 96 (2007) 559–564.
DOI: 10.1016/j.biosystemseng.2007.01.004
Google Scholar
[80]
Guerra I., Vivar I., Llamas B., Juan A. and Moran J., Eco-efficient concretes: The effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete, Waste Manag. 29 (2009) 643–646.
DOI: 10.1016/j.wasman.2008.06.018
Google Scholar
[81]
Fuller B., Fafitis A. and Santamaria J., Structural Properties of a New Material Made of Waste Paper, Build. Integr. Solut. (2006) 1–16. doi:.
DOI: 10.1061/40798(190)10
Google Scholar
[82]
Santamaría A., Orbe A., José J.T.S. and González J.J., A study on the durability of structural concrete incorporating electric steelmaking slags, Constr. Build. Mater. 161 (2018) 94–111. doi:https://doi.org/10.1016/j.conbuildmat.2017.11.121.
DOI: 10.1016/j.conbuildmat.2017.11.121
Google Scholar
[83]
Brock J.R., Dry Application Pаpercrete, (2011). US Patent US2011/0094421 A1.
Google Scholar
[84]
Pаpercrete Block Press [video file] (2013) https://www.youtube.com/ watch?v=OEPYUVkCq4A (accessed December 27, 2019).
Google Scholar
[85]
Wioletta J., Kamil Z., Andrzej G. and Benoit B., Properties of Cement Mortars Modified with Ceramic Waste Fillers. Procedia Engineering 108 (2015) 681-687.
DOI: 10.1016/j.proeng.2015.06.199
Google Scholar
[86]
Asha P.; Dipti S.; Rupali P. and Prerana P., Effect of paper waste on concrete properties: Sustainability approach. International Journal of Science and Research (IJSR), 6(4), (2017) 440–444.
Google Scholar
[87]
Jiménez J.R, Ayuso J., López M., Fernández J.M. and de Brito J., Construction and Building Materials, 40 (2013) 679–690.
DOI: 10.1016/j.conbuildmat.2012.11.036
Google Scholar