[1]
I. Kaur, Y. Mishin and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, Wiley, Chichester, West Sussex (1995).
Google Scholar
[2]
H. Gleiter, Acta Mater. 48, 1 (2000).
Google Scholar
[3]
T. Surholt and Chr. Herzig, Acta Mater. 45, 3817 (1997).
Google Scholar
[4]
Y. Mishin, Defect and Diffusion Forum 194-199, 1113 (2001).
Google Scholar
[5]
Y. Mishin, Chr. Herzig, J. Bernardini and W. Gust, Int. Mater. Reviews 42, 155 (1997).
Google Scholar
[6]
I. Kaur, W. Gust and L. Kozma, Handbook of Grain and Interphase Boundary Diffusion Data, Ziegler, Stuttgart (1989).
Google Scholar
[7]
R. W¨urschum, S. Herth and U. Brossmann, Adv. Eng. Mater. 5, 365 (2003).
Google Scholar
[8]
J. C. Fisher, J. Appl. Phys. 22, 74 (1951).
Google Scholar
[9]
Y. Mishin and W. Gust, Ionics 7, 247 (2001).
Google Scholar
[10]
J. H. Harding, Interface Science 11, 81 (2003).
Google Scholar
[11]
J. Horvath, R. Birringer and H. Gleiter, Solid State Comm. 62, 319 (1987).
Google Scholar
[12]
S. Schumacher, R. Birringer, R. Straus and H. Gleiter, Acta Metall. 37, 2485 (1989).
Google Scholar
[13]
R. W¨urschum, K. Reimann and P. Farber, Defect Diff. Forum 143-147, 1463 (1997).
Google Scholar
[14]
H. Tanimoto, P. Farber, R. W¨urschum, R. Z. Valiev and H. -E. Schaefer, Nanostruct. Mater. 12, 681 (1999).
Google Scholar
[15]
Y. K. Kolobov, G. P. Grabovetskaya, M. B. Ivanov, A. P. Zhilyaev and R. Z. Valiev, Scripta Mater. 44, 873 (2001).
DOI: 10.1016/s1359-6462(00)00699-0
Google Scholar
[16]
Y. Mishin, in: Diffusion Processes in Advanced Technological Materials, edited by D. Gupta, Noyes Publications/William Andrew Publishing, Norwich, NY (2004), in press.
Google Scholar
[17]
M. R. Sørensen, Y. Mishin and A. F. Voter, Phys. Rev. B 62, 3658 (2000).
Google Scholar
[18]
A. Suzuki and Y. Mishin, Interface Science 11, 131 (2003).
Google Scholar
[19]
A. Suzuki and Y. Mishin, Interface Science 11, 425 (2003).
Google Scholar
[20]
M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).
Google Scholar
[21]
A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials, Clarendon Press, Oxford (1995).
Google Scholar
[22]
G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
Google Scholar
[23]
G. Henkelman, G. Johannesson and H. J´onsson, in: Theoretical Methods in Condensed Phase Chemistry, edited by S. D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics, chapter 10, Kluwer Academic Publishers (2000).
Google Scholar
[24]
Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter and J. D. Kress, Phys. Rev. B 63, 224106 (2001).
Google Scholar
[25]
P. Keblinski, D. Wolf, S. R. Phillpot and H. Gleiter, Philos. Mag. A 79, 2735 (1999).
Google Scholar
[26]
A. Suzuki and Y. Mishin (2004), to be published.
Google Scholar
[27]
R. N. Barnett and U. Landman, Phys. Rev. B 44, 3226 (1991).
Google Scholar
[28]
F. Willaime, Adv. Eng. Mater. 3, 283 (2001).
Google Scholar
[29]
A. P. Sutton and V. Vitek, Phil. Trans. Roy. Soc. Lond. A 309, 1 (1983).
Google Scholar
[30]
A. G. Marinopoulos, V. Vitek and J. L. Bassani, Phys. Status Solidi (a) 166, 453 (1998).
Google Scholar
[31]
G. J. Ackland and M. W. Finnis, Philos. Mag. A 54, 301 (1986).
Google Scholar
[32]
P. Gumbsch and M. S. Daw, Phys. Rev. B 44, 3934 (1991).
Google Scholar
[33]
R. W. Balluffi, in: Diffusion in Crystalline Solids, edited by G. E. Murch and A. S. Nowick, Academic Press, New York (1984), p.319.
Google Scholar
[34]
Q. Ma, C. L. Liu, J. B. Adams and R. W. Balluffi, Acta metall. mater. 41, 143 (1993).
Google Scholar
[35]
C. L. Liu and S. J. Plimpton, Phys. Rev. B 51, 4523 (1995).
Google Scholar
[36]
M. Nomura, S. -Y. Lee and J. B. Adams, J. Mater. Res. 6, 1 (1991).
Google Scholar
[37]
M. Nomura and J. B. Adams, J. Mater. Res. 7, 3202 (1992).
Google Scholar
[38]
M. Nomura and J. B. Adams, J. Mater. Res. 10, 2916 (1995).
Google Scholar
[39]
R. L. Coble, J. Appl. Phys. 34, 1679 (1963).
Google Scholar
[40]
V. T. Borisov, V. M. Golikov and G. V. Scherbedinsky, Phys. Met. Metallogr. 17, 80 (1964).
Google Scholar
[41]
D. Gupta, Metall. Trans. A 8, 1431 (1977).
Google Scholar
[42]
D. Gupta, Interface Science 11, 7 (2003).
Google Scholar
[43]
A. R. Ubbelohde, Molten State of Matter: Melting and Crystal Structure, Wiley, Chichester (1978).
Google Scholar
[44]
J. Frenkel, Kinetic Theory of Liquids, Dover, New York (1955).
Google Scholar
[45]
H. I. Aaronson and J. K. Lee, in: Lectures on the Theory of Phase Transformations, edited by H. I. Aaronson, chapter 4, 165-229, Mineral, Metals and Materials Society, Warrendale, PA (1999).
Google Scholar
[46]
M. Born and K. Huang, Dynamic Theory of Crystal Lattices, Oxford University Press, London (1962).
Google Scholar
[47]
G. Ciccotti, M. Guillope and V. Pontikis, Phys. Rev. B 27, 5576 (1983).
Google Scholar
[48]
T. Nguyen, P. S. Ho, T. Kwok, C. Nitta and S. Yip, Phys. Rev. B 46, 6050 (1992).
Google Scholar
[49]
C. Rottman, Phys. Rev. Lett. 57, 735 (1986).
Google Scholar
[50]
C. Rottman, Acta Metall. 34, 2465 (1986).
Google Scholar
[51]
P. Keblinski and V. Yamakov, Interface Science 11, 111 (2003).
Google Scholar
[52]
P. Keblinski, D. Wolf, S. R. Phillpot and H. Gleiter, Scripta Mater. 41, 631 (1999).
Google Scholar
[53]
G. Henkelman and H. J´onsson, J. Chem. Phys. 115, 9657 (2001).
Google Scholar
[54]
A. F. Voter, F. Montalenti and T. C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002).
Google Scholar
[55]
Y. Mishin, A. Y. Lozovoi and A. Alavi, Phys. Rev. B 67, 014201 (2003).
Google Scholar
[56]
A. Heesemann, V. Zollmer, K. Ratzke and F. Faupel, Phys. Rev. Lett. 84, 1467 (2000).
Google Scholar
[57]
I. A. Ovid'ko and A. G. Sheinerman, Philos. Mag. 83, 1551 (2003).
Google Scholar