Simultaneous Measurement of Epinephrine and Ascorbic Acid at the Carbon Nanotube Electrode

Article Preview

Abstract:

Electrochemical behaviors of epinephrine and ascorbic acid have been studied at the carbon nanotube electrode using cyclic voltammetry. Electrocatalysis has been found for epinephrine redox reactions at the carbon nanotube electrode in the comparison with the glassy carbon electrode. A well-defined oxidative peak for ascorbic acid was observed at the carbon nanotube electrode with the peak potential negative shift versus the glassy carbon electrode. Low level of epinephrine can be determined at the carbon nanotube electrode selectively with high sensitivity in the presence of a large excess of ascorbic acid in the acidic media and in the physiological pH buffer solution.

You might also be interested in these eBooks

Info:

Pages:

305-308

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. H. C. Westerink, W. Timmerman, Anal Chim Acta Vol. 379(1999), p.2638.

Google Scholar

[2] F. Blandini, d'Eril G. V. Melzi, G. Sances, C. Lucarelli, C. E. Herborg, Chromatographia Vol. 36 (1993), p.164.

DOI: 10.1007/bf02263855

Google Scholar

[3] B. R. Copper, R. M. Wightman, J. W. Jogenson, J. Chromatog. B, Vol. 653 (1994), p.25.

Google Scholar

[4] F. B. Salem, Alexandria J. Pharm. Sci. Vol. 9 (1995), p.143.

Google Scholar

[5] A. Kojlo, C. J. Martinez, Anal Chim Acta, Vol. 308 (1995), p.334.

Google Scholar

[6] A. Sucheta, F. J. Rusling, Electroanalysis (NY), Vol. 3 (1991), p.735.

Google Scholar

[7] X. Z. Wu, L.J. Mu, W.Z. Zhang, J. Electroanal. Chem. Vol. 352 (1993), p.295.

Google Scholar

[8] E. L. Ciolkowski, K. M. Maness, P. S. Cahill, R. M. Wightman, D. H. Evans, B. Fosset, C. Amatore, Anal. Chem. Vol. 66(1994), p.3611.

DOI: 10.1021/ac00093a013

Google Scholar

[9] J. O. Schenk, E. Miller, R. N. Adams, J. Chem. Educ. Vol. 60 (1983), p.311.

Google Scholar

[10] Y. Hasebe, T. Hirano, S. Uchiyama, Sensors and Actuators B Vol. 24 (1995), p.94.

Google Scholar

[11] S. Sasso, P. Pierce, R. Walla, A. Yacynych, Anal. Chem. Vol. 62 (1990), p.111.

Google Scholar

[12] C. Malitesta, F. Palmisano, L. Torsi, P.G. Zambonin, Anal. Chem. 62 (1990), p.2735.

Google Scholar

[13] I. Christie, P. Treloar, P. Vadgama, Anal. Chim. Acta. Vol. 269 (1992), p.65.

Google Scholar

[14] J. Wang, P. Tuzhi, T. Golden, Anal. Chim. Acta. Vol. 194 (1987), p.129.

Google Scholar

[15] J. Wang, T. Golden, Anal. Chem. Vol. 61 (1989), p.1397.

Google Scholar

[16] G. Bremle, B. Persson, L. Gorton, Electroanalysis, Vol. 3 (1991), p.77.

Google Scholar

[17] N. F. Atta, A. Galal, A. E. Karagozler, G. C. Russell, H. Zimmer, H. B. Mark, Biosens Bioelectron, Vol. 6 (1991), p.333.

Google Scholar

[18] J. Wang, T. Golden, Anal. Chim. Acta. Vol. 217 (1989), p.343.

Google Scholar

[19] J. Wang, J. Liu, Anal. Chim. Acta. Vol. 294 (1994), p.201.

Google Scholar

[20] M.Z. Zou, S. Hu, Chin. J. Anal. Chem. Vol. 20 (1992), p.588.

Google Scholar