Effects of Microwave Irradiation Type on the Morphological and Dimensional Properties of Silver Nanoparticles

Article Preview

Abstract:

Microwave irradiation is a novel method to accelerate the preparation of inorganic nanoparticles as well as various nanostructures such as nanotubes, nanorods, and nanowires. In this research, silver (Ag) nanostructures with various morphologies were prepared via a rapid microwave-assisted technique. The spherical and polygonal Ag nanoparticles were synthesized in the presence of Polyvinilpyroliden (PVP) as stabilizing agent. Ethylene glycol (EG) serves as a solvent. The silver nanoparticles were produced by Continuous and Discontinuous Wave irradiation. The obtained materials were characterized by UV-visible and transmission electron microscopy (TEM). The results present that the size of nanoparticles increase in continuous irradiation. In this process, the morphology of product is polygonal. In the discontinuous process the colloidal particle size is smaller than that obtained from the continuous process. Furthermore, the Ag nanoparticles have spherical shapes. The final data show that microwave processing has unique advantages over conventional heating processes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-43

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C. Daniel and D. Astruc: Chem. Soc. Rev. Vol. 104 (2004), p.293.

Google Scholar

[2] G. Schmid: Chem. Rev. Vol. 92 (1992), p.1709.

Google Scholar

[3] L.N. Lewis: Chem. Rev. Vol. 93 (1993), p.2693.

Google Scholar

[4] A. Henglein: J. Phys. Chem. Vol. 97 (1993), p.8457.

Google Scholar

[5] Y. Sun and Y. Xia: Science Vol. 298 (2002), p.2176.

Google Scholar

[6] B. Wiley, Y. Sun, J. Chen, H. Cang, Z.Y. Li, X. Li and Y. Xia: MRS Bull. Vol. 30 (2005), p.356.

Google Scholar

[7] B. Wiley, Y. Sun, B. Mayers and Y. Xia: Chem. Eur. J. Vol. 11 (2005), p.454.

Google Scholar

[8] J.P. Abid, A.W. Wark, P.F. Brevet and H.H. Girault: Chem. Commum. (2002), p.792.

Google Scholar

[9] V.G. Pol, D.N. Srivastava, V. Palchik, M.A. Slifkin, A.M. Weiss and A. Gedanken: Langmuir Vol. 18 (2002), p.3352.

DOI: 10.1021/la0155552

Google Scholar

[10] R.M. Stiger, S. Gorer, B. Craft and P.M. Penner: Langmuir Vol. 15 (1999), p.790.

Google Scholar

[11] H. Malune, J.Y. Kohon,Y. Takeda and T. Kondow: J. Phys. Chem. B Vol. 104 (2000), p.8333.

Google Scholar

[12] H.H. Hunng, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, H.C. Loh, J.H. Deng and G.Q. Xu: Langmuir Vol. 12 (1996), p.909.

Google Scholar

[13] H. Rong, Q. Xuefeng, J. Yin and Z. Zhu: J. Mater. Chem. Vol. 12 (2002), p.3783.

Google Scholar

[14] S.A. Vorobyova, A.I. Lesnikovich and N.S. Sobal: Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 152 (1999), p.375.

DOI: 10.1016/s0927-7757(98)00861-9

Google Scholar

[15] S.H. Choi, Y.P. Zhang, A. Gopalan, K.P. Lee and H.D. Kang: Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 256 (2005), p.165.

Google Scholar

[16] Z. Li, Y. Li, X.F. Qian, J. Yin and Z.K. Zhu: Applied Surface Science Vol. 250 (2005), p.109.

Google Scholar

[17] H.P. Choo, K.Y. Liew, H.F. Liu and C.E. Seng: J. Mol. Catal. A: Chem. Vol. 165 (2001), p.127.

Google Scholar

[18] H.S. Shin, H.J. Yang, S.B. Kim and M.S. Lee: J. Colloid Interface Sci. Vol. 89 (2004), p.274.

Google Scholar

[19] M. Tsuji, N. Miyamae, K. Matsumoto, S. Hikino and T. Tsuji: Chem. Lett. Vol. 34 (2005), p.1518.

Google Scholar

[20] F.K. Liu, P.W. Huang, Y.C. Chang, C.J. Ko, F.H. Ko and T.C. Chu: J. Cryst. Growth Vol. 273 (2005), p.439.

Google Scholar

[21] T. Yamamoto, H. Yin, Y. Wada, T. Kitamura, T. Sakata, H. Mori and S. Yanagida: Bull. Chem. Soc. Jpn. Vol. 77 (2004), p.757.

Google Scholar

[22] M. Tsuji, Y. Nishizawa, M. Hashimoto and T. Tsuji: Chem. Lett. Vol. 33 (2004), p.370.

Google Scholar

[23] R. He, X. Qian, J. Yin and Z. Zhu: Chem. Phys. Lett. Vol. 369 (2003), p.454.

Google Scholar

[24] R. He, X. Qian, J. Yin and Z. Zhu: J. Mater. Chem. Vol. 12 (2002), p.3783.

Google Scholar

[25] S. Komarneni, D. Li, B. Newalkar, H. Katsuki and A.S. Bhalla: Langmuir Vol. 18 (2002), p.5959.

DOI: 10.1021/la025741n

Google Scholar

[26] I. Pastoriza-Santos and L. Liz-Marzan: Langmuir Vol. 18 (2002), p.2888.

Google Scholar

[27] M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa and T. Tsuji: Chem. Eur. J. Vol. 11 (2005), p.440.

Google Scholar

[28] S. A. Galema: Chem. Soc. Rev. Vol. 26 (1997), p.233.

Google Scholar