[1]
S. Badiei, L. Holmlid, Atomic hydrogen in condensed form produced by a catalytic process: A future energy-rich fuel? Energy Fuels, 19 (2005) 2235-2239.
DOI: 10.1021/ef050172n
Google Scholar
[2]
I.F. Silvera, J.W. Cole, Metallic hydrogen: The most powerful rocket fuel yet exists, J. Phys.: Conf. Ser. 215 (2010) Article no. 012194.
DOI: 10.1088/1742-6596/215/1/012194
Google Scholar
[3]
S. Badiei, P.U. Andersson, L. Holmlid, Fusion reactions in high-density hydrogen: A fast route to small-scale fusion? Int. J. Hydrogen Energy 34 (2009) 487-495.
DOI: 10.1016/j.ijhydene.2008.10.024
Google Scholar
[4]
S. Badiei, L. Holmlid, Condensed atomic hydrogen as a possible target in intertial confinement fusion (ICF), Fusion Eng. Des. 27 (2008) 296-300.
DOI: 10.1007/s10894-008-9134-5
Google Scholar
[5]
E.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Transition of an excited gas to a metallic state, Tech. Phys. Lett. 6 (1980) 95-99.
Google Scholar
[6]
R.F. Trunin, V.D. Urlin, A.B. Medvedev, Dynamic compression of hydrogen isotopes at megabar pressures, Phys. Usp. 53 (2010) 605-622.
DOI: 10.3367/ufne.0180.201006d.0605
Google Scholar
[7]
G.V. Borisov, A.I. Bykov, R.I. Il'kaev, V.D. Seemir, G.V. Simakov, R.F. Trunin, V.D. Urlin, A.N. Shuikin, W.J. Nellis, Shok compression of liquid deuterium up to 109 GPa, Phys. Rev. B: Condens. Matter. Mater. Phys. 71 (2005) 1-4.
DOI: 10.1103/physrevb.71.092104
Google Scholar
[8]
L.F. Vereshchagin, E.N. Yakovlev, Yu.A. Timofeev, Possibility of transition of hydrogen into the metallic state, J. Exp. Theor. Phys. Lett. 21 (1975) 85-88.
Google Scholar
[9]
H. -K. Mao, R.J. Hemley, Ultrahigh-pressure transitions in solid hydrogen, Rev. Modern Phys. 66 (1994) 671-692.
DOI: 10.1103/revmodphys.66.671
Google Scholar
[10]
Yu.S. Nechaev, The high-density hydrogen carrier intercalation in graphane-like nanostructures, Relevance to its on-board storage in fuel-cell-powered vehicles, The Open Fuel Cells Journal (TOFCJ) 4 (2011) 16-29.
DOI: 10.2174/1875932701104010016
Google Scholar
[11]
Yu.S. Nechaev, O.K. Alexeeva, A. Oechsner, On the hydrogen multilayer intercalation in carbonaceous nanostructures: Relevance for development of super-adsorbents for fuel-cell-powered vehicles, J. Nanosci. Nanotechnology 9 (2009) 3949-3958.
DOI: 10.1166/jnn.2009.ns95
Google Scholar
[12]
Yu.S. Nechaev, Carbon nanomaterials, relevance to solving the hydrogen storage problem, J. Nano Res. 12 (2010) 1-44.
DOI: 10.4028/www.scientific.net/jnanor.12.1
Google Scholar
[13]
J.O. Sofo, A.S. Chaudhari, G.D. Barber, Graphane: a two-dimensional hydrocarbon, Phys. Rev. B 75 (2007) 153401-4.
DOI: 10.1103/physrevb.75.153401
Google Scholar
[14]
D.C. Elias, R.R. Nair, T.M. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.S. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Control of graphene's properties by reversible hydrogenation: Evidence for graphane, Science 323 (2009).
DOI: 10.1126/science.1167130
Google Scholar
[15]
Z. Waqar, Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption, J. Mater. Sci. 42 (2007) 1169-1176.
DOI: 10.1007/s10853-006-1453-1
Google Scholar
[16]
E.A. Denisov, T.N. Kompaniets, I.V. Makarenko, Z. Vakar, A.N. Titkov, Hydrogen thermosorption from pyrolytic graphite exposed to atomic hydrogen, Materialovedenie (Materials science) 2 (2003) 45-49.
DOI: 10.1238/physica.topical.103a00043
Google Scholar
[17]
E.A. Denisov, T.N. Kompaniets, Kinetics of hydrogen release from graphite after hydrogen atom sorption, Phys. Scr. T 94 (2001) 128-131.
DOI: 10.1238/physica.topical.094a00128
Google Scholar
[18]
E.A. Denisov, T.N. Kompaniets, Interaction of graphite with atomic hydrogen, Tech. Phys. 46 (2001) 240-244.
DOI: 10.1134/1.1349284
Google Scholar
[19]
Z. Waqar, E.A. Denisov, T.N. Kompaniets, I.V. Makarenko, A.N. Titkov, Modification of graphite surface in the course of atomic hydrogen sorption STM and AFM study, Phys. Scr. T. 94 (2001) 132-136.
DOI: 10.1238/physica.topical.094a00132
Google Scholar
[20]
C. Thomas, J. -M. Layet, T. Angot, Atomic hydrogen interaction with HOPG surface, In Extended Abstracts, Carbon 2006, The British Carbon Group (2006). The Robert Gordon University.
Google Scholar
[21]
C. San Marchi, B.P. Somerday, S.L. Robinson, Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressure, Int. J. Hydrogen Energy 32 (2007) 100-116.
DOI: 10.1016/j.ijhydene.2006.05.008
Google Scholar
[22]
E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: Elastisity, strength, and toughness of nanorods and nanotubes, Science 277 (1997) 1971-(1975).
DOI: 10.1126/science.277.5334.1971
Google Scholar
[23]
H. Kim, M.J. Kaufman, W.M. Sigmund, D. Jacques, R. Andrews, Observation and formation mechanism of stable face-centered-cubic Fe nanorods in carbon nanotubes, J. Mater. Res. 18 (2003) 1104-1108.
DOI: 10.1557/jmr.2003.0152
Google Scholar
[24]
B.A. Galanov, S.B. Galanov, Y. Gogotsi, Stress-strain state of multiwall carbon nanotube under internal pressure, J. Nanopart. Res. 4 (2002) 207-214.
DOI: 10.1007/978-94-010-0341-4_5
Google Scholar
[25]
F. Banhart, P.M. Ajayan, Carbon onions as nanoscopic pressure cells for diamond formation, Nature 382 (1996) 433-435.
DOI: 10.1038/382433a0
Google Scholar
[26]
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer grapheme, Science 321 (2008) 385-388.
DOI: 10.1126/science.1157996
Google Scholar
[27]
S.S. Han, J.K. Kang, H.M. Lee, Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles, Appl. Phys. Lett. 86 (2005) 1–9.
DOI: 10.1063/1.1929084
Google Scholar
[28]
Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett. 74 (1999) 2307-2309.
DOI: 10.1063/1.123833
Google Scholar
[29]
A. Allouche, Y. Ferro, T. Angot, C. Thomas, J. -M. Layet, Hydrogen adsorption on graphite (0001) surface: A combined spectroscopy-density-functional-theory study, J. Chem. Phys. 123 (2005) 124701-6.
DOI: 10.1063/1.2043008
Google Scholar
[30]
Y. Ma, Y. Xia, M. Zhao, M. Ying, Structures of hydrogen molecules in single-walled carbon nanotubes, Chem. Phys. Lett. 357 (2002) 97-102.
DOI: 10.1016/s0009-2614(02)00448-7
Google Scholar
[31]
Y. Xia, M. Zhao, Y. Ma, M. Ying, X. Liu, P. Liu, L. Mei, Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure, Phys. Rev. B: Condens. Matter Mater. Phys. 65 (2002) 1554151-7.
DOI: 10.1103/physrevb.65.155415
Google Scholar
[32]
Xia, Y.; Zhao, M.; Ma, Y.; Liu, X.; Ying, M.; Mei, L. Condensation and phase transitions of hydrogen molecules confined in single-walled carbon nanotubes. Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67(11), 115117, 1151171-5.
DOI: 10.1103/physrevb.67.115117
Google Scholar
[33]
Y.C. Ma, Y. Xia, M. Zhao, M. Ying, Hydrogen storage capacity in single-walled carbon nanotubes, Phys. Rev. B: Condens. Matter Mater. Phys. 65 (2002) 1554301-6.
DOI: 10.1103/physrevb.65.155430
Google Scholar
[34]
F.H. Yang, R.T. Yang, Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes, Carbon 40 (2002) 437-444.
DOI: 10.1016/s0008-6223(01)00199-3
Google Scholar
[35]
B.K. Gupta, R.S. Tiwari, O.N. Srivastava, Studies on synthesis and hydrogenation behavior of graphitic nanofibers prepared through palladium catalyst assisted thermal cracking of acetylene, J. Alloys Compd. 381 (2004) 301-308.
DOI: 10.1016/j.jallcom.2004.03.094
Google Scholar
[36]
C. Park, P.E. Anderson, A. Chambers, C.D. Tan, R. Hidalgo, N.M. Rodriguez, Further studies of the interaction of hydrogen with graphite nanofibers, J. Phys. Chem. B 103 (1999) 10572-10581.
DOI: 10.1021/jp990500i
Google Scholar
[37]
S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, The U.S. Department of Energy's national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements, Catal. Today 120 (2007) 246-257.
DOI: 10.1016/j.cattod.2006.09.022
Google Scholar
[38]
S.M. Lee, K.H. An, Y.H. Lee, G. Seifert, T. Frauenheim, A hydrogen storage mechanism in single- walled carbon nanotubes, J. Am. Chem. Soc. 123 (2001) 5059-5063.
DOI: 10.1021/ja003751+
Google Scholar
[39]
A. Nikitin, H. Ogasawara, D. Mann, R. Denecke, Z. Zhang, H. Dai, A. Nillson, Hydrogenation of single-walled carbon nanotubes, Phys. Rev. Lett. 95 (2005) 2255071-4.
DOI: 10.1103/physrevlett.95.225507
Google Scholar
[40]
D. Lupu, A.R. Biris, I. Misan, A. Jianu, G. Holzhüter, E. Burkel, Hydrogen uptake by carbon nanofibers catalyzed by palladium, Int. J. Hydrogen Energy 29 (2004) 97-102.
DOI: 10.1016/s0360-3199(03)00055-7
Google Scholar
[41]
Yu.S. Nechaev, Method of producing the high-density hydrogen carrier, Russian potential patent № 2010134792 (2011).
Google Scholar
[42]
Yu.S. Nechaev, Method of producing and splitting of the multilayer graphane, Russian potential patent № 2010153171 (2011).
Google Scholar
[43]
H. Atsumi, K. Tauchi, Hydrogen absorption and transport in graphite materials, J. Alloys Compounds 356-357 (2003) 705-709.
DOI: 10.1016/s0925-8388(03)00290-1
Google Scholar
[44]
S. Orimo, A. Züttel, L. Schlapbach, J. Majer, T. Fukunaga, H. Fujii, Hydrogen interaction with carbon nanostructures: current and future prospects, J. Alloys Compounds 356-357 (2003) 716-719.
DOI: 10.1016/s0925-8388(03)00175-0
Google Scholar
[45]
C.W. Bauschlicher Jr., C.R. So, High coverages of hydrogen on (10, 0), (9, 0) and (5, 5) carbon nanotubes, Nano Lett. 2 (2002) 337-341.
DOI: 10.1021/nl020283o
Google Scholar
[46]
A. Nikitin, X. Li, Z. Zhang, H. Ogasawara, H. Dai, A. Nilsson, Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds, Nano Lett. 8 (2008) 162-167.
DOI: 10.1021/nl072325k
Google Scholar
[47]
M. Kh. Karapet'yants, M.L. Karapet'yants, Osnovnye Termodinamicheskie Konstanty Neorganicheskikh i Organicheskikh Veshchestv (Fundamental Thermodynamic Constants of Inorganic and Organic Substances), Khimiya, Moscow, (1968).
Google Scholar
[48]
S.M. Pimenova, S.V. Melkhanova, V.P. Kolesov, A.S. Lobach, The enthalpy of formation and C-H bond enthalpy hydrofullerene C60H36, J. Phys. Chem. B 106 (2002) 2127-2130.
DOI: 10.1021/jp012258x
Google Scholar
[49]
Yu.S. Nechaev, On the solid hydrogen carrier intercalation in graphane-like regions in carbon-based nanostructures, Int. J. Hydrogen Energy 36 (2011) 9023-9031.
DOI: 10.1016/j.ijhydene.2011.04.073
Google Scholar
[50]
E.F. Sheka, N.A. Popova, V.A. Popova, E.A. Nikitina, L.H. Shayamardanova, Structure-sensitive mechanism of nanographene failure, J. Exp. Theor. Phys. 139 (2011) 695-705.
DOI: 10.1134/s1063776111040224
Google Scholar
[51]
E.F. Sheka, N.A. Popova, How graphene is transformed into regular graphane structure, arXiv: 1102. 0922v 1 [cond-mat. mes-hall].
Google Scholar
[52]
Y. Lin, F. Ding, B.I. Yakobson, Hydrogen storage by spillver on graphene as a phase nucleation process, Phys. Rev. B – Condens. Matter. Mater. Phys. 78 (2008) Article number 041402.
DOI: 10.1103/physrevb.78.041402
Google Scholar
[53]
A.K. Singh, M.A. Ribas, B.I. Yakobson, H-spillover through the catalist saturation: An AB initio thermodynamics study, ACS Nano 3 (2009) 1657-1662.
DOI: 10.1021/nn9004044
Google Scholar
[54]
L. Wang, R.T. Yang, New sorbents for hydrogen storage by hydrohen spillover – A review, Energy and Environmental Science 1 (2008) 268-279.
Google Scholar
[55]
L. Wang, R.T. Yang, Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spllover, Catalysis Reviews – Science and Engineering 52 (2010) 411-461.
DOI: 10.1080/01614940.2010.520265
Google Scholar
[56]
H. Lee, J. Ihm, M.L. Cohen, S.G. Louie, Calcium-decorated graphene-based nanostructures for hydrogen storage, Nano Letters 10 (2010) 793-798.
DOI: 10.1021/nl902822s
Google Scholar
[57]
A. Reyhani, S.Z. Mortazavi, S. Mirershadi, A.Z. Moshfegh, P. Parvin, A.N. Golikand, Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni and Pd nanoparticles ander embient conditions, J. Phys. Chem. C 115 (2011) 6994-7001.
DOI: 10.1021/jp108797p
Google Scholar
[58]
O.A. Maslova, S.V. Vazhenin, T.M. Zhukovsky, M.S. Zhukovsky, S.A. Beznosyuk, Nanosystem accumulators of hydrogen: Quantum polycondensates of hydrogen biradicals in carbon nanotubes, Int. J. Hydrogen Energy 36 (2011) 1287-1291.
DOI: 10.1016/j.ijhydene.2010.06.132
Google Scholar
[59]
D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculation, Phys. Rev. B - Condens. Matter. Mater. Phys. 77 (2008).
DOI: 10.1103/physrevb.77.035427
Google Scholar
[60]
Y. Yürum, A. Taralp, T.N. Veziroglu, Storage of hydrogen in nanostructured carbon materials, Int. J. Hydrogen Energy 34 (2009) 3784-3798.
DOI: 10.1016/j.ijhydene.2009.03.001
Google Scholar