On the Solid Hydrogen Intercalation in Multilayer Carbohydride-Like Graphane Nanostructures, Relevance to the Storage Applications

Article Preview

Abstract:

In this analytical review, some thermodynamic, physical and nanotechnological aspects of the graphene/graphane problem are considered (in a correlation), relevance to developing a much simpler and efficient method (in comparison with the megabar compression dynamic and static ones) of producing a high-density solid molecular hydrogen carrier. It is achieved by the hydrogen intercalation (at the cost of the hydrogen association energy) in closed multigraphane (carbohydride-like) nanostructures of the megabar strength properties. The limiting density value (0.7±0.2 g/cm3(H2)) of such intercalated high-purity reversible hydrogen carrier corresponds to a megabar compression. The “volumetric” hydrogen capacity is of 0.3±0.1 g/cm3(system), and the “gravimetric” one being ≥ 15 wt %( H2). Such a hydrogen storage nanotechnology can exceed and/or correspond to the known U.S. DOE requirements-targets on the hydrogen on-board storage for 2015 (www.eere.energy.gov /hydrogenandfuelcells), with respect to the hydrogen capacities (0.081 g/cm3(system), 9.0 wt %( H2)), safety, reversibility and purity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-93

Citation:

Online since:

September 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Badiei, L. Holmlid, Atomic hydrogen in condensed form produced by a catalytic process: A future energy-rich fuel? Energy Fuels, 19 (2005) 2235-2239.

DOI: 10.1021/ef050172n

Google Scholar

[2] I.F. Silvera, J.W. Cole, Metallic hydrogen: The most powerful rocket fuel yet exists, J. Phys.: Conf. Ser. 215 (2010) Article no. 012194.

DOI: 10.1088/1742-6596/215/1/012194

Google Scholar

[3] S. Badiei, P.U. Andersson, L. Holmlid, Fusion reactions in high-density hydrogen: A fast route to small-scale fusion? Int. J. Hydrogen Energy 34 (2009) 487-495.

DOI: 10.1016/j.ijhydene.2008.10.024

Google Scholar

[4] S. Badiei, L. Holmlid, Condensed atomic hydrogen as a possible target in intertial confinement fusion (ICF), Fusion Eng. Des. 27 (2008) 296-300.

DOI: 10.1007/s10894-008-9134-5

Google Scholar

[5] E.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Transition of an excited gas to a metallic state, Tech. Phys. Lett. 6 (1980) 95-99.

Google Scholar

[6] R.F. Trunin, V.D. Urlin, A.B. Medvedev, Dynamic compression of hydrogen isotopes at megabar pressures, Phys. Usp. 53 (2010) 605-622.

DOI: 10.3367/ufne.0180.201006d.0605

Google Scholar

[7] G.V. Borisov, A.I. Bykov, R.I. Il'kaev, V.D. Seemir, G.V. Simakov, R.F. Trunin, V.D. Urlin, A.N. Shuikin, W.J. Nellis, Shok compression of liquid deuterium up to 109 GPa, Phys. Rev. B: Condens. Matter. Mater. Phys. 71 (2005) 1-4.

DOI: 10.1103/physrevb.71.092104

Google Scholar

[8] L.F. Vereshchagin, E.N. Yakovlev, Yu.A. Timofeev, Possibility of transition of hydrogen into the metallic state, J. Exp. Theor. Phys. Lett. 21 (1975) 85-88.

Google Scholar

[9] H. -K. Mao, R.J. Hemley, Ultrahigh-pressure transitions in solid hydrogen, Rev. Modern Phys. 66 (1994) 671-692.

DOI: 10.1103/revmodphys.66.671

Google Scholar

[10] Yu.S. Nechaev, The high-density hydrogen carrier intercalation in graphane-like nanostructures, Relevance to its on-board storage in fuel-cell-powered vehicles, The Open Fuel Cells Journal (TOFCJ) 4 (2011) 16-29.

DOI: 10.2174/1875932701104010016

Google Scholar

[11] Yu.S. Nechaev, O.K. Alexeeva, A. Oechsner, On the hydrogen multilayer intercalation in carbonaceous nanostructures: Relevance for development of super-adsorbents for fuel-cell-powered vehicles, J. Nanosci. Nanotechnology 9 (2009) 3949-3958.

DOI: 10.1166/jnn.2009.ns95

Google Scholar

[12] Yu.S. Nechaev, Carbon nanomaterials, relevance to solving the hydrogen storage problem, J. Nano Res. 12 (2010) 1-44.

DOI: 10.4028/www.scientific.net/jnanor.12.1

Google Scholar

[13] J.O. Sofo, A.S. Chaudhari, G.D. Barber, Graphane: a two-dimensional hydrocarbon, Phys. Rev. B 75 (2007) 153401-4.

DOI: 10.1103/physrevb.75.153401

Google Scholar

[14] D.C. Elias, R.R. Nair, T.M. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.S. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Control of graphene's properties by reversible hydrogenation: Evidence for graphane, Science 323 (2009).

DOI: 10.1126/science.1167130

Google Scholar

[15] Z. Waqar, Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption, J. Mater. Sci. 42 (2007) 1169-1176.

DOI: 10.1007/s10853-006-1453-1

Google Scholar

[16] E.A. Denisov, T.N. Kompaniets, I.V. Makarenko, Z. Vakar, A.N. Titkov, Hydrogen thermosorption from pyrolytic graphite exposed to atomic hydrogen, Materialovedenie (Materials science) 2 (2003) 45-49.

DOI: 10.1238/physica.topical.103a00043

Google Scholar

[17] E.A. Denisov, T.N. Kompaniets, Kinetics of hydrogen release from graphite after hydrogen atom sorption, Phys. Scr. T 94 (2001) 128-131.

DOI: 10.1238/physica.topical.094a00128

Google Scholar

[18] E.A. Denisov, T.N. Kompaniets, Interaction of graphite with atomic hydrogen, Tech. Phys. 46 (2001) 240-244.

DOI: 10.1134/1.1349284

Google Scholar

[19] Z. Waqar, E.A. Denisov, T.N. Kompaniets, I.V. Makarenko, A.N. Titkov, Modification of graphite surface in the course of atomic hydrogen sorption STM and AFM study, Phys. Scr. T. 94 (2001) 132-136.

DOI: 10.1238/physica.topical.094a00132

Google Scholar

[20] C. Thomas, J. -M. Layet, T. Angot, Atomic hydrogen interaction with HOPG surface, In Extended Abstracts, Carbon 2006, The British Carbon Group (2006). The Robert Gordon University.

Google Scholar

[21] C. San Marchi, B.P. Somerday, S.L. Robinson, Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressure, Int. J. Hydrogen Energy 32 (2007) 100-116.

DOI: 10.1016/j.ijhydene.2006.05.008

Google Scholar

[22] E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: Elastisity, strength, and toughness of nanorods and nanotubes, Science 277 (1997) 1971-(1975).

DOI: 10.1126/science.277.5334.1971

Google Scholar

[23] H. Kim, M.J. Kaufman, W.M. Sigmund, D. Jacques, R. Andrews, Observation and formation mechanism of stable face-centered-cubic Fe nanorods in carbon nanotubes, J. Mater. Res. 18 (2003) 1104-1108.

DOI: 10.1557/jmr.2003.0152

Google Scholar

[24] B.A. Galanov, S.B. Galanov, Y. Gogotsi, Stress-strain state of multiwall carbon nanotube under internal pressure, J. Nanopart. Res. 4 (2002) 207-214.

DOI: 10.1007/978-94-010-0341-4_5

Google Scholar

[25] F. Banhart, P.M. Ajayan, Carbon onions as nanoscopic pressure cells for diamond formation, Nature 382 (1996) 433-435.

DOI: 10.1038/382433a0

Google Scholar

[26] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer grapheme, Science 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[27] S.S. Han, J.K. Kang, H.M. Lee, Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles, Appl. Phys. Lett. 86 (2005) 1–9.

DOI: 10.1063/1.1929084

Google Scholar

[28] Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett. 74 (1999) 2307-2309.

DOI: 10.1063/1.123833

Google Scholar

[29] A. Allouche, Y. Ferro, T. Angot, C. Thomas, J. -M. Layet, Hydrogen adsorption on graphite (0001) surface: A combined spectroscopy-density-functional-theory study, J. Chem. Phys. 123 (2005) 124701-6.

DOI: 10.1063/1.2043008

Google Scholar

[30] Y. Ma, Y. Xia, M. Zhao, M. Ying, Structures of hydrogen molecules in single-walled carbon nanotubes, Chem. Phys. Lett. 357 (2002) 97-102.

DOI: 10.1016/s0009-2614(02)00448-7

Google Scholar

[31] Y. Xia, M. Zhao, Y. Ma, M. Ying, X. Liu, P. Liu, L. Mei, Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure, Phys. Rev. B: Condens. Matter Mater. Phys. 65 (2002) 1554151-7.

DOI: 10.1103/physrevb.65.155415

Google Scholar

[32] Xia, Y.; Zhao, M.; Ma, Y.; Liu, X.; Ying, M.; Mei, L. Condensation and phase transitions of hydrogen molecules confined in single-walled carbon nanotubes. Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67(11), 115117, 1151171-5.

DOI: 10.1103/physrevb.67.115117

Google Scholar

[33] Y.C. Ma, Y. Xia, M. Zhao, M. Ying, Hydrogen storage capacity in single-walled carbon nanotubes, Phys. Rev. B: Condens. Matter Mater. Phys. 65 (2002) 1554301-6.

DOI: 10.1103/physrevb.65.155430

Google Scholar

[34] F.H. Yang, R.T. Yang, Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes, Carbon 40 (2002) 437-444.

DOI: 10.1016/s0008-6223(01)00199-3

Google Scholar

[35] B.K. Gupta, R.S. Tiwari, O.N. Srivastava, Studies on synthesis and hydrogenation behavior of graphitic nanofibers prepared through palladium catalyst assisted thermal cracking of acetylene, J. Alloys Compd. 381 (2004) 301-308.

DOI: 10.1016/j.jallcom.2004.03.094

Google Scholar

[36] C. Park, P.E. Anderson, A. Chambers, C.D. Tan, R. Hidalgo, N.M. Rodriguez, Further studies of the interaction of hydrogen with graphite nanofibers, J. Phys. Chem. B 103 (1999) 10572-10581.

DOI: 10.1021/jp990500i

Google Scholar

[37] S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, The U.S. Department of Energy's national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements, Catal. Today 120 (2007) 246-257.

DOI: 10.1016/j.cattod.2006.09.022

Google Scholar

[38] S.M. Lee, K.H. An, Y.H. Lee, G. Seifert, T. Frauenheim, A hydrogen storage mechanism in single- walled carbon nanotubes, J. Am. Chem. Soc. 123 (2001) 5059-5063.

DOI: 10.1021/ja003751+

Google Scholar

[39] A. Nikitin, H. Ogasawara, D. Mann, R. Denecke, Z. Zhang, H. Dai, A. Nillson, Hydrogenation of single-walled carbon nanotubes, Phys. Rev. Lett. 95 (2005) 2255071-4.

DOI: 10.1103/physrevlett.95.225507

Google Scholar

[40] D. Lupu, A.R. Biris, I. Misan, A. Jianu, G. Holzhüter, E. Burkel, Hydrogen uptake by carbon nanofibers catalyzed by palladium, Int. J. Hydrogen Energy 29 (2004) 97-102.

DOI: 10.1016/s0360-3199(03)00055-7

Google Scholar

[41] Yu.S. Nechaev, Method of producing the high-density hydrogen carrier, Russian potential patent № 2010134792 (2011).

Google Scholar

[42] Yu.S. Nechaev, Method of producing and splitting of the multilayer graphane, Russian potential patent № 2010153171 (2011).

Google Scholar

[43] H. Atsumi, K. Tauchi, Hydrogen absorption and transport in graphite materials, J. Alloys Compounds 356-357 (2003) 705-709.

DOI: 10.1016/s0925-8388(03)00290-1

Google Scholar

[44] S. Orimo, A. Züttel, L. Schlapbach, J. Majer, T. Fukunaga, H. Fujii, Hydrogen interaction with carbon nanostructures: current and future prospects, J. Alloys Compounds 356-357 (2003) 716-719.

DOI: 10.1016/s0925-8388(03)00175-0

Google Scholar

[45] C.W. Bauschlicher Jr., C.R. So, High coverages of hydrogen on (10, 0), (9, 0) and (5, 5) carbon nanotubes, Nano Lett. 2 (2002) 337-341.

DOI: 10.1021/nl020283o

Google Scholar

[46] A. Nikitin, X. Li, Z. Zhang, H. Ogasawara, H. Dai, A. Nilsson, Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds, Nano Lett. 8 (2008) 162-167.

DOI: 10.1021/nl072325k

Google Scholar

[47] M. Kh. Karapet'yants, M.L. Karapet'yants, Osnovnye Termodinamicheskie Konstanty Neorganicheskikh i Organicheskikh Veshchestv (Fundamental Thermodynamic Constants of Inorganic and Organic Substances), Khimiya, Moscow, (1968).

Google Scholar

[48] S.M. Pimenova, S.V. Melkhanova, V.P. Kolesov, A.S. Lobach, The enthalpy of formation and C-H bond enthalpy hydrofullerene C60H36, J. Phys. Chem. B 106 (2002) 2127-2130.

DOI: 10.1021/jp012258x

Google Scholar

[49] Yu.S. Nechaev, On the solid hydrogen carrier intercalation in graphane-like regions in carbon-based nanostructures, Int. J. Hydrogen Energy 36 (2011) 9023-9031.

DOI: 10.1016/j.ijhydene.2011.04.073

Google Scholar

[50] E.F. Sheka, N.A. Popova, V.A. Popova, E.A. Nikitina, L.H. Shayamardanova, Structure-sensitive mechanism of nanographene failure, J. Exp. Theor. Phys. 139 (2011) 695-705.

DOI: 10.1134/s1063776111040224

Google Scholar

[51] E.F. Sheka, N.A. Popova, How graphene is transformed into regular graphane structure, arXiv: 1102. 0922v 1 [cond-mat. mes-hall].

Google Scholar

[52] Y. Lin, F. Ding, B.I. Yakobson, Hydrogen storage by spillver on graphene as a phase nucleation process, Phys. Rev. B – Condens. Matter. Mater. Phys. 78 (2008) Article number 041402.

DOI: 10.1103/physrevb.78.041402

Google Scholar

[53] A.K. Singh, M.A. Ribas, B.I. Yakobson, H-spillover through the catalist saturation: An AB initio thermodynamics study, ACS Nano 3 (2009) 1657-1662.

DOI: 10.1021/nn9004044

Google Scholar

[54] L. Wang, R.T. Yang, New sorbents for hydrogen storage by hydrohen spillover – A review, Energy and Environmental Science 1 (2008) 268-279.

Google Scholar

[55] L. Wang, R.T. Yang, Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spllover, Catalysis Reviews – Science and Engineering 52 (2010) 411-461.

DOI: 10.1080/01614940.2010.520265

Google Scholar

[56] H. Lee, J. Ihm, M.L. Cohen, S.G. Louie, Calcium-decorated graphene-based nanostructures for hydrogen storage, Nano Letters 10 (2010) 793-798.

DOI: 10.1021/nl902822s

Google Scholar

[57] A. Reyhani, S.Z. Mortazavi, S. Mirershadi, A.Z. Moshfegh, P. Parvin, A.N. Golikand, Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni and Pd nanoparticles ander embient conditions, J. Phys. Chem. C 115 (2011) 6994-7001.

DOI: 10.1021/jp108797p

Google Scholar

[58] O.A. Maslova, S.V. Vazhenin, T.M. Zhukovsky, M.S. Zhukovsky, S.A. Beznosyuk, Nanosystem accumulators of hydrogen: Quantum polycondensates of hydrogen biradicals in carbon nanotubes, Int. J. Hydrogen Energy 36 (2011) 1287-1291.

DOI: 10.1016/j.ijhydene.2010.06.132

Google Scholar

[59] D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculation, Phys. Rev. B - Condens. Matter. Mater. Phys. 77 (2008).

DOI: 10.1103/physrevb.77.035427

Google Scholar

[60] Y. Yürum, A. Taralp, T.N. Veziroglu, Storage of hydrogen in nanostructured carbon materials, Int. J. Hydrogen Energy 34 (2009) 3784-3798.

DOI: 10.1016/j.ijhydene.2009.03.001

Google Scholar