[1]
N. Durlu, Titanium carbide based composites for high-temperature applications, J. Euro. Ceram. Soc. 19 (1999) 2415-2419.
DOI: 10.1016/s0955-2219(99)00101-6
Google Scholar
[2]
P. Ettmayer, H. Kolaska, W. Lengauer, K. Dreyer, Ti(C, N) cermets-metallurgy and properties, Int. J. Refract. and Mater. 13 (1995) 343-351.
DOI: 10.1016/0263-4368(95)00027-g
Google Scholar
[3]
H. Preiss, L.M. Berger, D. Schultze, Studies on the carbothermal preparation of titanium carbide from different gel precursors, J. Euro. Ceram. Soc. 19 (1999) 195-206.
DOI: 10.1016/s0955-2219(98)00190-3
Google Scholar
[4]
N. J. Welham, D. J. Llewellyn, Formation of nanometric hard materials by cold milling, J. Euro. Ceram. Soc. 19 (1999) 2833-2841.
DOI: 10.1016/s0955-2219(99)00071-0
Google Scholar
[5]
A. Maitre, D. Tetard, P. Lefort, Role of some technological parameters during carburizing titanium dioxide, J. Euro. Ceram. Soc. 20 (2000) 15-22.
DOI: 10.1016/s0955-2219(99)00074-6
Google Scholar
[6]
R. M. Ren, Z. G. Yang, L. L. Shaw, Synthesis of nanostructured TiC via carbothermic reduction enhanced by mechanical activation, Scrip. Mater. 38 (1998) 735-741.
DOI: 10.1016/s1359-6462(97)00552-6
Google Scholar
[7]
T. Halander, O. Tolochko, An experimental investigation of possible B2-ordering in Al-Cr system, J. Phas. Equil. 20(1) (1999) 57-60.
DOI: 10.1361/105497199770335947
Google Scholar
[8]
D.W. Lee, J.H. Ahn, B. K. Kim, Preparation of nanostructured titanium carbonitride particles by Mg-thermal reduction, J. Mater. Res. 20(4) (2005) 844-849.
DOI: 10.1557/jmr.2005.0118
Google Scholar
[9]
D.W. Lee, J. Y. Yoon, F. R. Turaev, J. H. Kim, S. J. Kim, Process optimization for production of ultrafine titanium carbonitride by magnesium reduction, J. Ceram. Soc. Jap. 117(5) (2009) 600-603.
DOI: 10.2109/jcersj2.117.600
Google Scholar
[10]
D.W. Lee, J.H. Ahn, H. Chung, Synthesis and nitrogen stability of ultrafine titanium carbonitride particles, J. Mater. Res. 22(1) (2007) 233-237.
DOI: 10.1557/jmr.2007.0024
Google Scholar