[1]
S. Budak, G. X. Miao, M. Ozdemir, Growth and characterization of single crystalline tin oxide (SnO2) nanowires, J. Cryst Growth, vol. 291 ( 2006) 405-411.
DOI: 10.1016/j.jcrysgro.2006.03.045
Google Scholar
[2]
C. Kilic, A. Zunger. Origins of Coexistence of Conductivity and Transparency in SnO2, Phys Rev Lett, 88: 9 (2002) 095501-095504.
Google Scholar
[3]
L. Chou, Y. Cai, B. Zhang, J. Niu, S. Ji, S. Li, Influence of SnO2-doped W-Mn/SiO2 for oxidative conversion of methane to high hydrocarbons at elevated pressure, Appl. Catal. A: Gen. 238 (2003) 185-191.
DOI: 10.1016/s0926-860x(02)00343-5
Google Scholar
[4]
P.T. Wierzchowski, L.W. Zatorski, Kinetics of catalytic oxidation of carbon monoxide and methane combustion over alumina supported Ga2O3, SnO2 or V2O5. Appl. Catal. B: Environmental 44 (2003) 53–65.
DOI: 10.1016/s0926-3373(03)00009-2
Google Scholar
[5]
A.J. Moulson, J.M. Herbert, Electroceramics: Materials Properties Applications,, Electroceramics, Chapman & Hall, New York, (1990).
Google Scholar
[6]
Z. Zhang, C. Yin, L. Yang, J. Jiang, Y. Guo, Optimizing the gas sensing characteristics of Co-doped SnO2 thin film based hydrogen sensor, Journal of Alloys and Compounds, 785 (2019) 819-825.
DOI: 10.1016/j.jallcom.2019.01.244
Google Scholar
[7]
S. Zhang, C. Yin, L. Yang, Z. Zhang, Z. Han, Investigation of the H2 sensing properties of multilayer mesoporous pure and Pd-doped SnO2 thin film, Sensors and Actuators B: Chemical vol. 283 (2019) 399-406.
DOI: 10.1016/j.snb.2018.12.051
Google Scholar
[8]
M. Kojima, F. Takahashi, K. Kinoshita, T. Nishibe, M. Ichidate, Transparent furnace made of heat mirror, Thin Solid Films 392 (2001) 349-354.
DOI: 10.1016/s0040-6090(01)01056-2
Google Scholar
[9]
C.M. Lampert, Heat mirror coatings for energy conserving windows, Sol. Ener. Mater. 6 (1981) 1-41.
Google Scholar
[10]
J.F. Wang, Y.J. Wang, .B. Su, H.C. Chen, W.X. Wang, Novel (Zn, Nb)-doped SnO2 varistors Mater. Sci. Eng. B96 (2002) 8-13.
DOI: 10.1016/s0921-5107(02)00271-4
Google Scholar
[11]
M.R.C. Santos, P.R. Bueno, E. Longo, J.A. Varela, Effect of oxidizing and reducing atmospheres on the electrical properties of dense SnO2-based varistors J. Eur. Ceram. Soc. 21 (2001) 161-167.
DOI: 10.1016/s0955-2219(00)00177-1
Google Scholar
[12]
T.E. Moustafid, H. Cachet, B. Tribollet, D. Festy, Modified transparent SnO2 electrodes as efficient and stable cathodes for oxygen reduction, Electrochim. Acta 47 (2002) 1209-1215.
DOI: 10.1016/s0013-4686(01)00845-3
Google Scholar
[13]
M. Okuya, S. Kaneko, K. Hiroshima, I. Yaggi, K. Murakami, Low temperature deposition of SnO2 thin films as transparent electrodes by spray pyrolysis of tetra-n-butyltin(IV), J. Eur. Ceram. Soc. 21 (2001) 2099-2102.
DOI: 10.1016/s0955-2219(01)00180-7
Google Scholar
[14]
D. Boulainine, A. Kabir, I. Bouanane, B. Boudjema, G. Schmerber, Oxidation temperature dependence of the structural, optical and electrical properties of SnO2 thin films, Journal of Electronic Materials (2016) 4357-4363.
DOI: 10.1007/s11664-016-4611-5
Google Scholar
[15]
T.W. Kim, D.U. Lee, D.C. Choo, J.H. Kim, H.J. Kim, J.H. Jeong, M. Jung, J.H. Bahang, H.L. Park, Y.S. Yoon, J.Y. Kim, Optical parameters in SnO2 nanocrystalline textured films grown on p-InSb (111) substrates, J. Phys. Chem. Solids 63 (2002) 881-885.
DOI: 10.1016/s0022-3697(01)00243-8
Google Scholar
[16]
H.W. Kim, S.H. Shim, C. Lee, SnO2 microparticles by thermal evaporation and their properties, Ceramics Inter. 32 (2006) 943-946.
DOI: 10.1016/j.ceramint.2005.06.015
Google Scholar
[17]
P. Prepelita, V. Craciun, G. Sbarcea, F. Garoi, Relevance of annealing on the stoichiometry and morphology of transparent thin films, Applied Surface Science 306 47-51 (2014).
DOI: 10.1016/j.apsusc.2014.02.063
Google Scholar
[18]
K. Bouras, « RE-Doped SnO2 Oxides for Efficient UV-Vis to Infrared Photon Conversion: Application to Solar Sells », PhD thesis from Université de Strasbourg, (2016).
Google Scholar
[19]
Z. W. Chen, G. Liu, H. J. Zhang, G. J. Ding, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu and J. K. L. Lai, « Insights into effect of annealing on microstructure from SnO2 thin films papared by pulsed delivery», Journal of Non-Crystalline Solids, vol. 355 ( 2009) 2647-2652.
DOI: 10.1016/j.jnoncrysol.2009.09.001
Google Scholar
[20]
S.M. Rozati, Sh. Akesteh, Characterization of ZnO:Al thin films obtained by spray pyrolysis technique, Materials Characterization 58 (2007) 319-322.
DOI: 10.1016/j.matchar.2006.05.012
Google Scholar
[21]
A. Tripathi, R.K. Shukla, Structural, optical and photoluminescence study of nanocrystalline SnO2 thin films deposited by spray pyrolysis, Bulletin of Materials Science 37 3 (2014) 417-423.
DOI: 10.1007/s12034-014-0695-9
Google Scholar
[22]
M.K. Karanjai, D.D. Gupta, A simple and novel technique for deposition of conducting tin dioxide films, J. Phys. D: Appl. Phys.21 (1988): 356-358.
DOI: 10.1088/0022-3727/21/2/017
Google Scholar
[23]
G. Shanker, P. Prathap, K.M.K. Srivatsa, P. Singh, Effect of balanced and unbalanced magnetron sputtering processes on the properties of SnO2 thin films, Current Applied Physics 19 6 (2019) 697-703.
DOI: 10.1016/j.cap.2019.03.016
Google Scholar
[24]
Q. Chen, Y. Qiana, Z. Chen, G. Zhoub, Y. Zhang, Fabrication of ultrafine SnO2, thin films by the hydrothermal method, Thin Solid Films 264 (1995) 25-27.
DOI: 10.1016/0040-6090(95)06586-5
Google Scholar
[25]
W. Hamd, « Elaboration par voie sol-gel et étude microstructurale de gels et de couches minces de SnO2 », PhD thesis from Université de Limoges, (2009).
Google Scholar
[26]
G. Gordillo, L. C. Moreno, W. Cruz, P. del C. Teheran, Preparation characterization of SnO2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors. Thin Solid Films 252 (1994) 61–66.
DOI: 10.1016/0040-6090(94)90826-5
Google Scholar
[27]
A. Rahal, A. Benhaoua, M. Jlassi, B. Benhaoua, Structural, optical and electrical properties studies of ultrasonically deposited tin oxide (SnO2) thin films with different substrate temperatures Superlattices and Microstructures Volume 86, (2015) 403-411.
DOI: 10.1016/j.spmi.2015.08.003
Google Scholar
[28]
G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metalargica 1 (1953) 22-31.
DOI: 10.1016/0001-6160(53)90006-6
Google Scholar
[29]
S. Nicoletti, L. Dori, G.C. Cardinali, A. Parisini, Gas sensors for air quality monitoring: realisation and characterisation of undoped and noble metal-doped SnO2 thin sensing films deposited by the pulsed laser ablation, Sensors and Actuators B: Chemical 60 (2-3) (1999) 90-96.
DOI: 10.1016/s0925-4005(99)00261-0
Google Scholar
[30]
C.H. Chen, E.M. Kelder, J. Schoonman, Unique porous LiCoO2 thin layers prepared by electrostatic spray deposition, Journal of Material Science, vol. 31 (1996) 5437-5442.
DOI: 10.1007/bf01159314
Google Scholar
[31]
D. Jadsadapattarakul, C. Euvananont, C. Thanachayanont, J. Nukeaw, T. Sooknoi, Tin oxide thin films deposited by ultrasonic spray pyrolysis, Ceramics International 34 (2008) 1051–1054.
DOI: 10.1016/j.ceramint.2007.09.096
Google Scholar
[32]
S. Ikhmayies, The Influence of the Substrate Temperature on the Properties of Solar Cell Related Thin Films in: Edited by N. Kolesnikov and E. Borisenko, Modern Aspects of Bulk Crystal and Thin Film Preparation, Published by InTech Janeza, Rijeka, 2012, pp.337-355.
DOI: 10.5772/29646
Google Scholar
[33]
J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Stat. Sol. 15 (1966) 627–637.
DOI: 10.1002/pssb.19660150224
Google Scholar
[34]
Edson R. Leite, M.I.B. Bernardi, Elson Longo, Jose A. Varela, C.A. Paskocimas, Enhanced electrical property of nanostructured Sb-doped SnO2 thin film processed by soft chemical method, Thin Solid Films 449 (2004) 67–72.
DOI: 10.1016/j.tsf.2003.10.101
Google Scholar
[35]
M. Nagasawa and S. Shionoya, Second Class Exciton Structure in Stannic Oxide, J. Phys. Soc. Jpn. vol 30 (1971) 158-167.
DOI: 10.1143/jpsj.30.158
Google Scholar
[36]
J. Melsheimer and D. Ziegler, Band Gap Energy and Urbach Tail Studies of Amorphous, Partially Crystalline and Polycrystalline Tin Dioxide, Thin Solid Films. 129 (1985) 35-47.
DOI: 10.1016/0040-6090(85)90092-6
Google Scholar
[37]
E. Shanthi, A. Banerjee and K.L. Chopra, Electrical and optical properties of undoped and antimony-doped tin oxide films, J. Appl. Phys. 51 (1980) 6243 - 6250.
DOI: 10.1063/1.327610
Google Scholar
[38]
K.L. Chopra, S. Major and D.K. Pandya, Electronics and Optics Transparent Conductors-A Status Review, Thin Solid Films 102 (1983) 1-46.
DOI: 10.1016/0040-6090(83)90256-0
Google Scholar
[39]
V.V. Asu and A. Subramaniam, Electrical and optical properties of pyrolytically sprayed SnO2 film-Dependence on substrate temperature and substrate-nozzle distance, Thin Solid Films Vol. 189 (1990) 217-225.
DOI: 10.1016/0040-6090(90)90450-r
Google Scholar
[40]
P.S. Patil, R.K. Kawa, S.B. Sadale and P.S. Chigare, Properties of spray deposited tin oxide thin films derived from tri-n-butyltin acetate, Thin Solid Films. vol. 437 (2003) 34-44.
DOI: 10.1016/s0040-6090(03)00680-1
Google Scholar