Effect of the Substrate Temperature on the Properties of SnO2 Thin Films Prepared by Ultrasonic Spray for Solar Cells Applications

Article Preview

Abstract:

Structural, optical and electrical properties of SnO2 thin films deposited by spray ultrasonic technique were investigated by varying substrate temperature. The structural characterization of the films was analyzed via X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). Films surface morphologies were studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Optical absorption spectrum was recorded using the UV–Vis spectroscopy and the films were found to be transparent. Optical measurements showed that the layers had a relatively high absorption coefficient of 105 cm−1. A shift in the absorption edge was observed and the films exhibited direct transitions with band gap energies ranging from 3.85 to 3.94 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-136

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Budak, G. X. Miao, M. Ozdemir, Growth and characterization of single crystalline tin oxide (SnO2) nanowires, J. Cryst Growth, vol. 291 ( 2006) 405-411.

DOI: 10.1016/j.jcrysgro.2006.03.045

Google Scholar

[2] C. Kilic, A. Zunger. Origins of Coexistence of Conductivity and Transparency in SnO2, Phys Rev Lett, 88: 9 (2002) 095501-095504.

Google Scholar

[3] L. Chou, Y. Cai, B. Zhang, J. Niu, S. Ji, S. Li, Influence of SnO2-doped W-Mn/SiO2 for oxidative conversion of methane to high hydrocarbons at elevated pressure, Appl. Catal. A: Gen. 238 (2003) 185-191.

DOI: 10.1016/s0926-860x(02)00343-5

Google Scholar

[4] P.T. Wierzchowski, L.W. Zatorski, Kinetics of catalytic oxidation of carbon monoxide and methane combustion over alumina supported Ga2O3, SnO2 or V2O5. Appl. Catal. B: Environmental 44 (2003) 53–65.

DOI: 10.1016/s0926-3373(03)00009-2

Google Scholar

[5] A.J. Moulson, J.M. Herbert, Electroceramics: Materials Properties Applications,, Electroceramics, Chapman & Hall, New York, (1990).

Google Scholar

[6] Z. Zhang, C. Yin, L. Yang, J. Jiang, Y. Guo, Optimizing the gas sensing characteristics of Co-doped SnO2 thin film based hydrogen sensor, Journal of Alloys and Compounds, 785 (2019) 819-825.

DOI: 10.1016/j.jallcom.2019.01.244

Google Scholar

[7] S. Zhang, C. Yin, L. Yang, Z. Zhang, Z. Han, Investigation of the H2 sensing properties of multilayer mesoporous pure and Pd-doped SnO2 thin film, Sensors and Actuators B: Chemical vol. 283 (2019) 399-406.

DOI: 10.1016/j.snb.2018.12.051

Google Scholar

[8] M. Kojima, F. Takahashi, K. Kinoshita, T. Nishibe, M. Ichidate, Transparent furnace made of heat mirror, Thin Solid Films 392 (2001) 349-354.

DOI: 10.1016/s0040-6090(01)01056-2

Google Scholar

[9] C.M. Lampert, Heat mirror coatings for energy conserving windows, Sol. Ener. Mater. 6 (1981) 1-41.

Google Scholar

[10] J.F. Wang, Y.J. Wang, .B. Su, H.C. Chen, W.X. Wang, Novel (Zn, Nb)-doped SnO2 varistors Mater. Sci. Eng. B96 (2002) 8-13.

DOI: 10.1016/s0921-5107(02)00271-4

Google Scholar

[11] M.R.C. Santos, P.R. Bueno, E. Longo, J.A. Varela, Effect of oxidizing and reducing atmospheres on the electrical properties of dense SnO2-based varistors J. Eur. Ceram. Soc. 21 (2001) 161-167.

DOI: 10.1016/s0955-2219(00)00177-1

Google Scholar

[12] T.E. Moustafid, H. Cachet, B. Tribollet, D. Festy, Modified transparent SnO2 electrodes as efficient and stable cathodes for oxygen reduction, Electrochim. Acta 47 (2002) 1209-1215.

DOI: 10.1016/s0013-4686(01)00845-3

Google Scholar

[13] M. Okuya, S. Kaneko, K. Hiroshima, I. Yaggi, K. Murakami, Low temperature deposition of SnO2 thin films as transparent electrodes by spray pyrolysis of tetra-n-butyltin(IV), J. Eur. Ceram. Soc. 21 (2001) 2099-2102.

DOI: 10.1016/s0955-2219(01)00180-7

Google Scholar

[14] D. Boulainine, A. Kabir, I. Bouanane, B. Boudjema, G. Schmerber, Oxidation temperature dependence of the structural, optical and electrical properties of SnO2 thin films, Journal of Electronic Materials (2016) 4357-4363.

DOI: 10.1007/s11664-016-4611-5

Google Scholar

[15] T.W. Kim, D.U. Lee, D.C. Choo, J.H. Kim, H.J. Kim, J.H. Jeong, M. Jung, J.H. Bahang, H.L. Park, Y.S. Yoon, J.Y. Kim, Optical parameters in SnO2 nanocrystalline textured films grown on p-InSb (111) substrates, J. Phys. Chem. Solids 63 (2002) 881-885.

DOI: 10.1016/s0022-3697(01)00243-8

Google Scholar

[16] H.W. Kim, S.H. Shim, C. Lee, SnO2 microparticles by thermal evaporation and their properties, Ceramics Inter. 32 (2006) 943-946.

DOI: 10.1016/j.ceramint.2005.06.015

Google Scholar

[17] P. Prepelita, V. Craciun, G. Sbarcea, F. Garoi, Relevance of annealing on the stoichiometry and morphology of transparent thin films, Applied Surface Science 306 47-51 (2014).

DOI: 10.1016/j.apsusc.2014.02.063

Google Scholar

[18] K. Bouras, « RE-Doped SnO2 Oxides for Efficient UV-Vis to Infrared Photon Conversion: Application to Solar Sells », PhD thesis from Université de Strasbourg, (2016).

Google Scholar

[19] Z. W. Chen, G. Liu, H. J. Zhang, G. J. Ding, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu and J. K. L. Lai, « Insights into effect of annealing on microstructure from SnO2 thin films papared by pulsed delivery», Journal of Non-Crystalline Solids, vol. 355 ( 2009) 2647-2652.

DOI: 10.1016/j.jnoncrysol.2009.09.001

Google Scholar

[20] S.M. Rozati, Sh. Akesteh, Characterization of ZnO:Al thin films obtained by spray pyrolysis technique, Materials Characterization 58 (2007) 319-322.

DOI: 10.1016/j.matchar.2006.05.012

Google Scholar

[21] A. Tripathi, R.K. Shukla, Structural, optical and photoluminescence study of nanocrystalline SnO2 thin films deposited by spray pyrolysis, Bulletin of Materials Science 37 3 (2014) 417-423.

DOI: 10.1007/s12034-014-0695-9

Google Scholar

[22] M.K. Karanjai, D.D. Gupta, A simple and novel technique for deposition of conducting tin dioxide films, J. Phys. D: Appl. Phys.21 (1988): 356-358.

DOI: 10.1088/0022-3727/21/2/017

Google Scholar

[23] G. Shanker, P. Prathap, K.M.K. Srivatsa, P. Singh, Effect of balanced and unbalanced magnetron sputtering processes on the properties of SnO2 thin films, Current Applied Physics 19 6 (2019) 697-703.

DOI: 10.1016/j.cap.2019.03.016

Google Scholar

[24] Q. Chen, Y. Qiana, Z. Chen, G. Zhoub, Y. Zhang, Fabrication of ultrafine SnO2, thin films by the hydrothermal method, Thin Solid Films 264 (1995) 25-27.

DOI: 10.1016/0040-6090(95)06586-5

Google Scholar

[25] W. Hamd, « Elaboration par voie sol-gel et étude microstructurale de gels et de couches minces de SnO2 », PhD thesis from Université de Limoges, (2009).

Google Scholar

[26] G. Gordillo, L. C. Moreno, W. Cruz, P. del C. Teheran, Preparation characterization of SnO2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors. Thin Solid Films 252 (1994) 61–66.

DOI: 10.1016/0040-6090(94)90826-5

Google Scholar

[27] A. Rahal, A. Benhaoua, M. Jlassi, B. Benhaoua, Structural, optical and electrical properties studies of ultrasonically deposited tin oxide (SnO2) thin films with different substrate temperatures Superlattices and Microstructures Volume 86, (2015) 403-411.

DOI: 10.1016/j.spmi.2015.08.003

Google Scholar

[28] G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metalargica 1 (1953) 22-31.

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[29] S. Nicoletti, L. Dori, G.C. Cardinali, A. Parisini, Gas sensors for air quality monitoring: realisation and characterisation of undoped and noble metal-doped SnO2 thin sensing films deposited by the pulsed laser ablation, Sensors and Actuators B: Chemical 60 (2-3) (1999) 90-96.

DOI: 10.1016/s0925-4005(99)00261-0

Google Scholar

[30] C.H. Chen, E.M. Kelder, J. Schoonman, Unique porous LiCoO2 thin layers prepared by electrostatic spray deposition, Journal of Material Science, vol. 31 (1996) 5437-5442.

DOI: 10.1007/bf01159314

Google Scholar

[31] D. Jadsadapattarakul, C. Euvananont, C. Thanachayanont, J. Nukeaw, T. Sooknoi, Tin oxide thin films deposited by ultrasonic spray pyrolysis, Ceramics International 34 (2008) 1051–1054.

DOI: 10.1016/j.ceramint.2007.09.096

Google Scholar

[32] S. Ikhmayies, The Influence of the Substrate Temperature on the Properties of Solar Cell Related Thin Films in: Edited by N. Kolesnikov and E. Borisenko, Modern Aspects of Bulk Crystal and Thin Film Preparation, Published by InTech Janeza, Rijeka, 2012, pp.337-355.

DOI: 10.5772/29646

Google Scholar

[33] J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Stat. Sol. 15 (1966) 627–637.

DOI: 10.1002/pssb.19660150224

Google Scholar

[34] Edson R. Leite, M.I.B. Bernardi, Elson Longo, Jose A. Varela, C.A. Paskocimas, Enhanced electrical property of nanostructured Sb-doped SnO2 thin film processed by soft chemical method, Thin Solid Films 449 (2004) 67–72.

DOI: 10.1016/j.tsf.2003.10.101

Google Scholar

[35] M. Nagasawa and S. Shionoya, Second Class Exciton Structure in Stannic Oxide, J. Phys. Soc. Jpn. vol 30 (1971) 158-167.

DOI: 10.1143/jpsj.30.158

Google Scholar

[36] J. Melsheimer and D. Ziegler, Band Gap Energy and Urbach Tail Studies of Amorphous, Partially Crystalline and Polycrystalline Tin Dioxide, Thin Solid Films. 129 (1985) 35-47.

DOI: 10.1016/0040-6090(85)90092-6

Google Scholar

[37] E. Shanthi, A. Banerjee and K.L. Chopra, Electrical and optical properties of undoped and antimony-doped tin oxide films, J. Appl. Phys. 51 (1980) 6243 - 6250.

DOI: 10.1063/1.327610

Google Scholar

[38] K.L. Chopra, S. Major and D.K. Pandya, Electronics and Optics Transparent Conductors-A Status Review, Thin Solid Films 102 (1983) 1-46.

DOI: 10.1016/0040-6090(83)90256-0

Google Scholar

[39] V.V. Asu and A. Subramaniam, Electrical and optical properties of pyrolytically sprayed SnO2 film-Dependence on substrate temperature and substrate-nozzle distance, Thin Solid Films Vol. 189 (1990) 217-225.

DOI: 10.1016/0040-6090(90)90450-r

Google Scholar

[40] P.S. Patil, R.K. Kawa, S.B. Sadale and P.S. Chigare, Properties of spray deposited tin oxide thin films derived from tri-n-butyltin acetate, Thin Solid Films. vol. 437 (2003) 34-44.

DOI: 10.1016/s0040-6090(03)00680-1

Google Scholar