[1]
Miyamoto, M., Kaysser, W.A., Rabin, B.H. et al. Functionally Graded Materials Design,. Processing and Applications, (1999).
Google Scholar
[2]
Suresh, S., Mortensen, A. Fundamentals of Functionally Graded Materials‖,,(IOM Communications Ltd., London), (1998).
Google Scholar
[3]
Öchsner, A., Murch, G.E. and Lemos, M.J.S. Cellular and Porous Materials,, WILEY-VCH, 398-417, (2008).
Google Scholar
[4]
Hadj Mostefa. A., Merdaci. S, and Mahmoudi. N. An Overview of Functionally Graded Materials «FGM»,, Proceedings of the Third International Symposium on Materials and Sustainable Development, ISBN 978-3-319-89706-6, 267–278, (2018).
DOI: 10.1007/978-3-319-89707-3_30
Google Scholar
[5]
Zhu, J. Lai, Z. Yin, Z. Jeon, J. and Lee, S. Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater. Chem. Phys, 68(1-3), 130-135, (2001).
DOI: 10.1016/s0254-0584(00)00355-2
Google Scholar
[6]
Wattanasakulpong, N. Prusty, B.G. Kelly, D.W. and Hoffman, M. Free vibration analysis of layered functionally graded beams with experimental validation. Mater. Des, 36, 182-190, (2012).
DOI: 10.1016/j.matdes.2011.10.049
Google Scholar
[7]
Merdaci.S, Boutaleb.S, Hellal.H, Benyoucef S, Analysis of Static Bending of Plates FGM Using Refined High Order Shear Deformation Theory,, J. Build. Mater. Struct, 6(1), 32-38, (2019).
DOI: 10.34118/jbms.v6i1.66
Google Scholar
[8]
Merdaci Slimane, Analysis of Bending of Functionally Graded Plates With Porosities Using of High Order Shear Theory,, Algerian Journal of Research and Technology, 2(1), 54-69, (2018).
DOI: 10.4028/www.scientific.net/aef.30.54
Google Scholar
[9]
Merdaci Slimane, Analysis of Bending of Ceramic-Metal Functionally Graded Plates with Porosities Using of High Order Shear Theory,; Advanced Engineering Forum, 30, 54-70, (2018).
DOI: 10.4028/www.scientific.net/aef.30.54
Google Scholar
[10]
Merdaci .S, Belghoul.H, High Order Shear Theory for Static Analysis Functionally Graded Plates with Porosities,, Comptes rendus Mecanique, 347(3), 207-217, (2019).
DOI: 10.1016/j.crme.2019.01.001
Google Scholar
[11]
Kaddari .M, Kaci .A, Bousahla .A.A,Tounsi .A, Bourada .F, Tounsi .A, Adda Bedia .E.A.; Al-Osta.M.A, A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis,, Computers and Concrete, 25(1), 37-57, (2020). DOI: https://doi.org/10.12989/cac.2020.25.1.037.
DOI: 10.12989/scs.2013.14.4.335
Google Scholar
[12]
Addou .F.Y, Mustapha .M, Bousahla .A.A, Benachour .A, Bourada .F, Tounsi .A and Mahmoud .S.R, Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT,, Computers and Concrete, 24(4),347-367, (2019). DOI: https://doi.org/10.12989/cac.2019.24.4.347.
Google Scholar
[13]
Merdaci .S, Hadj Mostefa .A, Influence of porosity on the analysis of sandwich plates FGM using of high order shear-deformation theory.,, Frattura ed Integrità Strutturale, 51, 199-214,(2020).
DOI: 10.3221/igf-esis.51.16
Google Scholar
[14]
Medani .M, Benahmed .A, Zidour .M, Heireche .H, Tounsi .A, Bousahla .A.A Tounsi .A, Mahmoud, S.R, Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle,, Steel and Composite Structures, 32(5), 595-610, (2019). DOI: https://doi.org/10.12989/scs.2019.32.5.595.
DOI: 10.4028/www.scientific.net/jnanor.57.117
Google Scholar
[15]
Draoui, A., Zidour, M., Tounsi, A. and Adim, B., Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT),, J. Nano Res., 57, 117-135, (2019).
DOI: 10.4028/www.scientific.net/jnanor.57.117
Google Scholar
[16]
R. Shimpi, H. Patel, Free vibrations of plate using two variable refined plate theory, J. Sound Vib. 296 ,979–999. (2006).
DOI: 10.1016/j.jsv.2006.03.030
Google Scholar
[17]
Jha D.K., Kant, T., and Singh R.K. Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates., Nucl. Eng. Des., 250, 8–13. (2012).
DOI: 10.1016/j.nucengdes.2012.05.001
Google Scholar
[18]
Wattanasakulpong, N. and Ungbhakorn, V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp.Sci. Technol, 32(1),111-120, (2014).
DOI: 10.1016/j.ast.2013.12.002
Google Scholar
[19]
A. Attia, A. Tounsi, E.A. Bedia, S. Mahmoud, Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories, Steel Compos. Struct. 18 , 187–212. (2015).
DOI: 10.12989/scs.2015.18.1.187
Google Scholar
[20]
S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories,, Struct. Eng. Mech. 53 ,1143–1165. (2015).
DOI: 10.12989/sem.2015.53.6.1143
Google Scholar
[21]
Merdaci .S, Belmahi .S, Belghoul .H, Hadj Mostefa .A ,Free Vibration Analysis of Functionally Graded Plates FG with Porosities,, International Journal of Engineering Research & Technology , 8(3), 143-147, (2019). DOI: http://dx.doi.org/10.17577/IJERTV8IS030098.
DOI: 10.17577/ijertv8is030098
Google Scholar
[22]
Merdaci .S, Free Vibration Analysis of Composite Material Plates "Case of a Typical Functionally Graded FG Plates Ceramic/Metal" with Porosities,, Nano Hybrids and Composites (NHC), 25, 69-83, (2019).
DOI: 10.4028/www.scientific.net/nhc.25.69
Google Scholar
[23]
Daneshmehr .A, Rajabpoor .A, Hadi .A, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, Vol. 95, pp.23-35, (2015).
DOI: 10.1016/j.ijengsci.2015.05.011
Google Scholar
[24]
Karami .B, Shahsavari .D, Janghorban .M, Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on non-local strain gradient theory and four variable refined plate theory, Mech. Adv. Mat. Struct. (2017).
DOI: 10.1080/15376494.2017.1323143
Google Scholar
[25]
Shahsavari .D, Karami .B, Mansouri .S, Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories, Eur. J. Mech. A, Solids (2017).
DOI: 10.1016/j.euromechsol.2017.09.004
Google Scholar
[26]
Boutaleb .S, Benrahou .K.H, Bakora .A, Algarni .A, Bousahla .A.A, Tounsi .A, Mahmoud .S.R and Tounsi .A, Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT,, Adv. Nano Res., Int. J., 7(3), 191-208, (2019). https://doi.org/10.12989/anr.2019.7.3.191.
Google Scholar
[27]
Hosseini-Hashemi .S, Taher .H.R.D , Akhavan .H, Omidi .M, Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory, Applied Mathematical Modelling, Vol. 34, No. 5, pp.1276-1291, (2010).
DOI: 10.1016/j.apm.2009.08.008
Google Scholar
[28]
A.C. Eringen D.G.B. Edelen,On nonlocal elasticity,, Int. J.Eng.Sci, 10, 233–248, (1972).
Google Scholar
[29]
A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,, J. Appl.Phys, 54(9), 4703–4710,(1983).
DOI: 10.1063/1.332803
Google Scholar
[30]
P. Lu, P. Zhang, H. Lee, C. Wang, J. Reddy, Actes de la Royal Society A, 463, 3225–3240, (2007).
Google Scholar
[31]
T. Murmu, S. Pradhan, Physica E: Systèmes à basse dimension et Nanostructures ,41(8), 1628–1633, (2009).
Google Scholar
[32]
Shariati .A, Ghabussi .A, Habibi .M, Safarpour .H, Safarpour .M, Tounsi .A, Safa .M ,Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundations,, Thin-Walled Structures, 154, 106840, (2020). https://doi.org/10.1016/j.tws.2020.106840.
DOI: 10.1016/j.tws.2020.106840
Google Scholar
[33]
Bellal .M, Hebali .H, Heireche .H, Bousahla .A.A, Tounsi .A, Bourada .F, Mahmoud S.R., Adda Bedia E.A. and Tounsi .A, Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model,, Steel and Composite Structures,34(5), 643-655, (2020). DOI: https://doi.org/10.12989/scs.2020.34.5.643.
Google Scholar
[34]
Asghar .S, Naeem .M.N, Hussain.T, Muzamal .M, Tounsi .A, Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis,, Computers and Concrete, 25(2), 133-144, (2020). DOI: https://doi.org/10.12989/cac.2020.25.2.133.
Google Scholar
[35]
Taj .M, Majeed .A, Hussain .M, Naeem .M.N., Safeer .M, Manzoor .A, Hidayat .U.K, Tounsi .A, Non-local orthotropic elastic shell model for vibration analysis of protein microtubules,, Computers and Concrete, 25(3), 245-253, (2020). DOI: https://doi.org/10.12989/cac.2020.25.3.245.
Google Scholar
[36]
Hussain .M, Nawaz .N.M, Taj .M, Tounsi .A, Simulating vibrations of vibration of single-walled carbon nanotube using Rayleigh-Ritz's method,, Advances in Nano Research, 8(3), 215-228, (2020). DOI: https://doi.org/10.12989/anr.2020.8.3.215.
Google Scholar
[37]
Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory,, Comput. Concrete, Int. J., 24(6), 579-586, (2019).
Google Scholar
[38]
Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M.,Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity,, Adv. Nano Res., Int. J., 7(6),431-442, (2019). https://doi.org/10.12989/anr.2019.7.6.431.
Google Scholar
[39]
Alimirzaei .S., Mohammadimehr .M, Tounsi .A, Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions,, Struct. Eng. Mech., Int. J., 71(5), 485-502, (2019).
DOI: 10.12989/sem.2016.59.3.431
Google Scholar
[40]
Semmah .A, Heireche .H, Bousahla .A.A, Tounsi .A, Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT,, Adv. Nano Res., Int. J., 7(2), 89-98, (2019). DOI: https://doi.org/10.12989/anr.2019.7.2.089.
Google Scholar
[41]
S. Natarajan, S. Chakraborty, M. Thangavel, S. Bordas, T. Rabczuk, Size-dependent free flexural vibration behavior of functionally graded nanoplates,, Computational Materials Science, Vol. 65, 74-80, (2012).
DOI: 10.1016/j.commatsci.2012.06.031
Google Scholar
[42]
H. Salehipour, H. Nahvi, A. Shahidi, Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories,, Composite Structures, Vol. 124, pp.283-291, (2015).
DOI: 10.1016/j.compstruct.2015.01.015
Google Scholar
[43]
I. Belkorissat, M. S. A. Houari, A. Tounsi, E. Bedia, S. Mahmoud, On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model,, Steel and Composite Structures, 18(4), pp.1063-1081, (2015).
DOI: 10.12989/scs.2015.18.4.1063
Google Scholar
[44]
Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R., Vibration analysis of different material distributions of functionally graded microbeam,, Struct. Eng. Mech., Int. J., 69(6), 637-649, (2019). https://doi.org/10.12989/sem.2019.69.6.637.
Google Scholar
[45]
Aghababaei. R, Reddy. J.N. Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates,, Journal of Sound and Vibration, 326, 277–289, (2009).
DOI: 10.1016/j.jsv.2009.04.044
Google Scholar
[46]
A. Zargaripoor, A. Daneshmehr, I. Isaac Hosseini ,A. Rajabpoor, Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method,, Journal of Computational Applied Mechanics,49(1), pp.86-101,(2018).
DOI: 10.1016/j.ijengsci.2015.05.011
Google Scholar
[47]
Gafour.Y , hmed Hamidi .A, Benahmed .A, Zidour .M and Bensattalah .T, Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle,, Advances in Nano Research, 8(1), 37-47,(2020). DOI: https://doi.org/10.12989/anr.2020.8.1.037.
Google Scholar
[48]
Berghouti .H, Adda Bedia .E.A., Benkhedda .A and Tounsi .A, Vibration analysis of nonlocal porous nanobeams made of functionally graded material,, Advances in Nano Research, 7(5), 351-364, (2019). DOI: https://doi.org/10.12989/anr.2019.7.5.351.
Google Scholar
[49]
Bourada .F, Bousahla .A.A, Bourada .M, Azzaz .A, Zinata .A, Tounsi .A, Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory,, Wind and Structures, 28(1), 19-30, (2019). DOI: https://doi.org/10.12989/was.2019.28.1.019.
DOI: 10.1177/1099636219845841
Google Scholar
[50]
Merdaci S, Tounsi A, Houari MSA, Mechab I, Hebali H, Benyoucef S. Two new refined shear displacement models for functionally graded sandwich plates, Arch Appl Mech, 81,1507-1522, (2011).
DOI: 10.1007/s00419-010-0497-5
Google Scholar
[51]
Reddy, J. N., and Phan, N. D. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory., J. Sound Vibrat, 98, 157–170. (1985).
DOI: 10.1016/0022-460x(85)90383-9
Google Scholar